
Sebastiano Poggi

Modern mobile
development
Native vs cross-platform apps

Scope

‣ Goal: help you choose

‣ Agenda

‣ Preconditions for success

‣ Understanding mobile

‣ Native or cross-platform

‣ Pick a cross-platform stack

“It depends”
‣ Everything in this talk may or may not apply to you

‣ Apply common sense

Terminology

Native app Cross-platform app

Uses native build tools

Android: Kotlin/Java/C++

iOS: ObjC/Swi!

Non-native build tools

Potentially uses web tech

Same tech across OSes

Neither runs in the browser

Company dynamics

Why are you here?

‣ You want a mobile app

‣ Greenfield vs The Big Rewrite™

‣ Tech debt

‣ Pre-existing team

‣ Recovering from failure

Teams

‣ No full-stack engineers in mobile

‣ Mobile devs dislike backend work

‣ …and vice versa

‣ Information/knowledge silos

‣ Misalignment and misunderstandings

Product vs Tech

‣ Different chains:

‣ Mobile reports to CPO

‣ Web and backend report to CTO

‣ Mobile as nobody’s child

‣ Management doesn’t “get” it

‣ Tech not built for it

Not all tech is created equal

‣ Web is almost always ahead

‣ Mobile comes later

‣ Web is straightforward

‣ Mobile can exacerbate org issues

When things go wrong

Nobody likes failure

‣ Failure causes management frustration

‣ Blaming games

‣ Tech stack as way to shi! responsibility

‣ Wrong choices for the wrong reasons

Bad apps exist…

‣ Bad choices —> bad apps

‣ Don’t force choices, evaluate assumptions

‣ Tech stacks don’t always work 1:1 on mobile

‣ Reach outside comfort zone

‣ Ensure higher-ups’ buy-in

Users don’t care
about the tech

They just want
to get stuff done

Users don’t care
about the tech

Help them,
help your business

Users don’t care
about the tech

They just want
to get stuff done

(Re)starting

Before you (re)start

‣ Ask the tough questions

Before you (re)start

‣ Ask the tough questions

Do your users want,
or need, a mobile app?

Before you (re)start

‣ Ask the tough questions

Can you satisfy your users with
a high quality, responsive website?

Before you (re)start

‣ Ask the tough questions

Does your competition
have an app?

Before you (re)start

‣ Ask the tough questions

Do their users use it?

Before you (re)start

‣ Ask the tough questions

How good is it?

Before you (re)start

‣ Ask the tough questions

‣ Use data to drive decisions

‣ Focus groups, user studies, etc

‣ Trust the data

‣ Even when you don’t like it

Scoping and responsibilities

‣ Who owns mobile?

‣ Align with rest of tech if possible

‣ Think about your users

‣ What do they want to do?

‣ Define app scope and what’s not in it

Capability vs capacity

‣ What can your existing teams do?

‣ Any native mobile devs?

‣ Do they want to do cross-platform?

‣ Ensure platform-native capability

‣ You’ll need it

Capability vs capacity

‣ Most apps require OS interactions

‣ If your app doesn’t, consider a website

‣ “Website apps” waste resources

‣ E.g.: ReactJS dev team doing mobile?

‣ Somewhat different tech and tools

‣ Native knowledge required

Team participation

‣ Involve your devs in the choice

‣ Listen to their fears

‣ Provide safety

‣ Avoid chasing tech fads

‣ Spikes are good

‣ …but can deceive

Commitment

‣ In for the long run

‣ Big investment

‣ Huge switching costs

‣ Tech and skill lock-in

‣ Change of tech means rewrite

Native or cross-platform?

The native advantage

‣ Native is always “be#er”

‣ Be#er performance

‣ Be#er integration and support

‣ More consistent with the OS

‣ More APIs/features

‣ Tooling is constantly improving

Not all is rosy

‣ Native is more expensive

‣ Dedicated team per OS

‣ Infrastructure & processes

‣ Different CI setups

‣ Different deploy and publishing

The cross-platform pragmatism

‣ Native may not be the best for you

‣ Cross-platform may be “enough”

‣ Vastly improved over the years

‣ Some dev experience advantages

‣ Prefer strong, non-native design language

A fictional app case study

‣ Wearables company

‣ Do they need an app?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

A fictional app case study

‣ Wearables company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

The main choices

React Native Xamarin Flu#er

Web-based

Cordova Ionic PhoneGap

Kotlin MP

The main choices

React Native Xamarin Flu#er

Web-based

Cordova Ionic PhoneGap

The main choices

React Native Xamarin Flu#er

‣ From Facebook

‣ Derived from ReactJS

‣ Share skills/code with web team

‣ Built on JavaScript and npm

‣ 3rd party supports desktop/wearables/tv/…

The main choices

React Native Xamarin Flu#er

‣ You can make B2C apps with it

‣ Plenty of “big” RN apps

‣ Performance has some limitations

‣ Custom UI needs per-platform implementations

‣ Famous cases of apps abandoning it

The main choices

React Native Xamarin Flu#er

‣ From Microso!

‣ Used to be paid, now it’s free and OSS

‣ Uses C# tools and NuGet, “full stack”

‣ Unique UI approach

‣ Xamarin.Forms or native views

The main choices

React Native Xamarin Flu#er

‣ Wraps and exposes platform-native APIs

‣ Limited support and tools

‣ Best for internal and unsophisticated apps

‣ Very enterprise-oriented

‣ Unsuitable for B2C apps?

The main choices

React Native Xamarin Flu#er

‣ From Google

‣ Quickly rising in popularity

‣ Lots of investments & marketing

‣ Great 1st party integrations (Firebase)

‣ Uses Dart and Pub

The main choices

React Native Xamarin Flu#er

‣ Mobile, desktop, web, embedded

‣ No WatchOS and tvOS

‣ Full-stack: backends in Dart

‣ Best-in-class testing capabilities

‣ Dev audience skewed to Android

The main choices

React Native Xamarin Flu#er

A sense of scale

Cordova

React Native

Flu!er

Ionic

Xamarin

Titanium/Appcelerator 1%

 5%

 11%

 14%

 15%

 20%

 1%

 4%

 8%

 6%

 12%

 17%

iOS (App Store) Android (Google Play)

Source: AppFigures.com

RIP

Numbers can deceive

Source: Statista.com

~1/3rd of all mobile developers
uses cross-platform tech

Numbers can deceive

Source: Statista.com

Flu
!e

r

Re
ac

t N
at

iv
e

Co
rd

ov
a

Io
ni

c

Xa
m

ar
in

Ph
on

eG
ap

Ko
tli

n
M

P

2%4%

11%
16%16%

38%
42%

2%
6%

14%
18%18%

42%
39%

0%

11%

26%28%29%

42%

30%

2019
2020
2021

Numbers can deceive

Source: Statista.com

Flu
!e

r

Re
ac

t N
at

iv
e

Co
rd

ov
a

Io
ni

c

Xa
m

ar
in

Ph
on

eG
ap

Ko
tli

n
M

P

2%4%

11%
16%16%

38%
42%

2%
6%

14%
18%18%

42%
39%

0%

11%

26%28%29%

42%

30%

2019
2020
2021

Numbers can deceive

Source: Statista.com

Flu
!e

r

Re
ac

t N
at

iv
e

Co
rd

ov
a

Io
ni

c

Xa
m

ar
in

Ph
on

eG
ap

Ko
tli

n
M

P

2%4%

11%
16%16%

38%
42%

2%
6%

14%
18%18%

42%
39%

0%

11%

26%28%29%

42%

30%

2019
2020
2021

Numbers can deceive

Source: Statista.com

Flu
!e

r

Re
ac

t N
at

iv
e

Co
rd

ov
a

Io
ni

c

Xa
m

ar
in

Ph
on

eG
ap

Ko
tli

n
M

P

2%4%

11%
16%16%

38%
42%

2%
6%

14%
18%18%

42%
39%

0%

11%

26%28%29%

42%

30%

2019
2020
2021

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

Another fictional case study

‣ Investment (fintech) company

‣ Do they need an app?

‣ Do they need a native app?

‣ Using the OS APIs heavily?

‣ Can users achieve their goals?

Another fictional case study

‣ Which cross-platform framework?

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team
Using Firebase services

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team
Using Firebase services

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team
Using Firebase services
Lots of custom UI

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team
Using Firebase services
Lots of custom UI

Another fictional case study

‣ Which cross-platform framework?

Strong in-house ReactJS team
Strong in-house .Net team
Using Firebase services
Lots of custom UI

Flu!er

‣ Unit testing

‣ More or less a solved problem

‣ UI testing

‣ Easier in Flu#er (widget tests)

‣ Native, React Native use per-platform tools

‣ Xamarin too, but custom

Testing on mobile

‣ Instrumented tests

‣ Slow, runs on virtual/physical devices

‣ Cloud services exist, but expensive

‣ Complex to set up and maintain

‣ Workarounds: more unit testing

‣ Specialised mobile CI solutions

Testing mobile UI on CI

‣ Bad choices will not be immediately clear

‣ RN apps abandoning RN a!er years

‣ Flu#er may turn out the same

‣ Keep an eye on the progress

‣ Failure will be expensive…

‣ …but stopping early will help

Review decisions

Takeaways

Make data-driven decisions
1. Understand if mobile can work for you

Sort out organisation and teams
2. Create the right environment

Make data-driven decisions
1. Understand if mobile can work for you

There is no silver bullet
3. Assess the compromises

Sort out organisation and teams
2. Create the right environment

Make data-driven decisions
1. Understand if mobile can work for you

Hopefully this talk helped you
4. Make the right choice and GO!

There is no silver bullet
3. Assess the compromises

Sort out organisation and teams
2. Create the right environment

Make data-driven decisions
1. Understand if mobile can work for you

That’s all, folks!
Questions?

Illustrations courtesy of Irasutoya

Sebastiano Poggi
twi#er.com/seebrock3r
go.sebastiano.dev/qcon-2022

