
@estesp

The State of APIs in the Container
Ecosystem

Phil Estes, Principal Engineer, AWS

QCon London 2022

@estesp

Developers, Developers, Developers
Docker led the container UX for developers *circa 2013-2014

● Docker’s command line was (and still is) a lightweight client

○ A well-defined HTTP-based REST API connected the client to the Docker engine

○ Usually local, but could be remote (TCP with certificate auth, or SSH tunneled)

● Developers love the command line, but APIs enable integration & automation

○ CI/CD, security tools, telemetry/monitoring, vendor extension points

@estesp

What’s behind the Docker API?
A configuration

The heart of a container is

the (JSON) representation

of its configuration.

The command to run; the

resources (cgroups), the

isolation settings

(namespaces), volumes,

env variables, …

An image bundle

The configuration is

paired with the image

metadata and layers of

filesystem content

This is what is “built”, and

then possibly “pushed”

and “pulled” from

container registries.

A registry protocol

An HTTP API to query,

inspect, fetch, and push

content to a remote

distribution endpoint.

For many this equates to

DockerHub, but has

grown to include many

OSS projects and hosted

registries.

@estesp

The OCI:
> Configuration = The runtime spec
> Image = The image spec
> Registry = The distribution spec
> Runtime implementation = runc

@estesp

But what about an API for containers?

@estesp

Docker provided a
solid answer for a

single node.

At scale, users need
to orchestrate

containers.

Cue: The orchestration wars..

@estesp

But, really we only
have time to talk
about Kubernetes.

@estesp

Kubernetes API Server

kubelet

Node

kubelet

Node

CRI CRI

$ kubectl apply -f podspec.yaml

Kubernetes API over HTTP: <endpoint>:8081/api/v1/services

Kubelet → container runtime = gRPC endpoint implementing CRI

@estesp

Kubernetes API
Key component of the control plane for K8s object interaction

● CRUD operations via a REST API over HTTP on common objects

○ Examples: Pods, Nodes, Services, Deployments, Secrets, DaemonSet

○ etcd distributed database and “object” watchers handle operational flow to workers

● The power of Kubernetes is in the extensibility of this declarative state system

○ Can create and operate on new resource objects (CRDs)

○ Custom controllers can handle operations related to a custom resource

@estesp

Kubernetes: The Container Runtime Interface (CRI)
Allows an OCI compliant container runtime to service the kubelet

● Today the CRI is the (only?) common API for runtimes

○ However, CRI is not used outside of the Kubernetes ecosystem (today)

○ Implementing the CRI requires a runtime to represent a “pod sandbox”, not just containers

● The dockershim implementation is deprecated and removed as of K8s 1.24

○ All runtimes must provide a CRI-implementing endpoint:

■ Today: cri-o, containerd, Docker (provided by Mirantis), and Singularity

@estesp

Kubernetes API Summary:
> HTTP/REST client API for K8s object model
> CRI over gRPC for kubelet - runtime
> Containers and images are OCI compliant

@estesp

But what about an API for containers?

@estesp

“Build. Ship. Run.”
(from an API perspective)

@estesp

Do APIs exist for “Build, Ship and Run”?
Build.

Dockerfile is not a

standard, but effectively a

de-facto standard.

What really matters is the

output: build tools take

many inputs & provide

unique capabilities but all

produce OCI compliant

images.

Ship.

Yes! The

registry/distribution

protocol is an OCI

standard today.

Pushing and pulling

images (and related

artifacts) is standardized

and the API is stable and

well-understood.

Run.

In the Kubernetes context,

yes; the K8s API is clearly

defined and adopted. At

the runtime layer only the

formats are standardized

CRI is the common factor

among major runtimes.

Underlying OCI types are

standardized.

@estesp

Build
● Use of traditional Dockerfile + base image workflows remain significant

○ Docker build, BuildKit, buildah, and many others

○ The “API” is the Dockerfile de-facto syntax standard; innovation favors BuildKit

● Many tools now combine build workflows with K8s dev and deployment

○ Skaffold

○ Tekton

○ Kaniko

○ ..and many vendor tools that integrate CI/CD, GitOps, etc. with traditional build operations

● Interesting projects

○ “ko” - static Go binary build and push integrated with many other tools

○ Buildpacks (CNCF)

○ dagger.io

@estesp

Ship
● Given the common registry/distribution API and common format (OCI) most

build tools directly handle the “ship” step to any OCI compliant registry

○ All the build tools listed on the last slide support pushing images to cloud services, on-prem, or

self-hosted registries

● Innovations around “ship” will most likely come via “artifacts” support

○ Signing support: cosign/sigstore & Notary v2

○ Software Bill of Materials (SBOM)

○ Bundling (images + Helm charts + ?)

● Artifact and signing support are being collaborated on in various OCI and CNCF

working groups, hopefully leading to common APIs and common formats

@estesp

Run

● K8s or something else?

○ With Kubernetes, you will have many

options for additional abstractions,

depending on managed service,

roll-your-own, etc. APIs will be

common across tools (e.g. K8s API,

Knative, OpenFaaS, CF, ..)

● Non-K8s container orchestration

○ Google Cloud Run

○ AWS Fargate/AWS EC2

○ Hashicorp Nomad

○ Cycle.io, Azure Container Instances

● Stay in the CNCF/K8s ecosystem?

○ Build/extend/integrate with the

Kubernetes API/control plane

○ Common API, broad adoption means

lots of building blocks & integrations

● Container runtime support:

○ Easy path: CRI support/integration

within K8s context

○ No clean option for integrating with

>1 specific runtimes; potential at

lowest layer (runc/OCI hooks) but has

drawbacks

User/Consumer Builder/Vendor

@estesp

Decision Points
> Docker engine & API still a valid single node solution

Lots of tools/integrations, compose, and podman implements API
Nerdctl+containerd providing a similar (client) experience sans Docker

> Kubernetes provides the most adopted platform for tools/APIs
Allows for broad standardization from developer toolsuite to production

> Most likely will adopt other APIs adjacent to K8s or containers
Cloud provider, infrastructure platform, cloud services (storage, network)

@estesp

The API Future
Significant innovation around runtimes/APIs will stay in Kubernetes

● SIG-Node, Kubelet, and OCI communities will innovate up through the stack to

enhance container capabilities

○ KEPs for user namespaces, checkpoint/restore, swap support

○ Bonus that work done at these layers is implemented in all CRI runtimes and exposed via common

APIs

● No clear path to commonality at the runtime layer itself

○ Effectively two main camps: Docker/containerd/runc or cri-o/podman/buildah/crun

○ Different design ideologies mean no real path to a common API for runtimes outside of CRI

@estesp

Thank You!

Phil Estes, Principal Engineer

Container Runtime Leader

Amazon Web Services

Maintainer, containerd

OCI Technical Oversight

Board member

