The State of APIs in the Container
Ecosystem

Phil Estes, Principal Engineer, AWS
QCon London 2022

dWS

Developers, Developers, Developers
Docker led the container UX for developers *circa 2013-2014

e Docker’s command line was (and still is) a lightweight client

o A well-defined HTTP-based REST API connected the client to the Docker engine
o Usually local, but could be remote (TCP with certificate auth, or SSH tunneled)

e Developers love the command line, but APIs enable integration & automation
o CI/CD, security tools, telemetry/monitoring, vendor extension points

- adWS
@estesp ~_"

What’s behind the Docker API?

The heart of a container is
the (JSON) representation
of its configuration.

The command to run; the
resources (cgroups), the
isolation settings
(namespaces), volumes,
env variables, ...

The configuration is
paired with the image
metadata and layers of
filesystem content

This is what is “built”, and
then possibly “pushed”
and “pulled” from

container registries.

An HTTP API to query,
inspect, fetch, and push
content to a remote
distribution endpoint.

For many this equates to
DockerHub, but has
grown to include many
OSS projects and hosted

registries. aws

@estesp

\-/‘7

The OCI:

> Configuration = The runtime spec
> Image = The image spec

> Registry = The distribution spec
> Runtime implementation = runc

@estesp

But what about an API for containers?

dWS

Docker provided a
solid answer for a

single node.

At scale, users need
to orchestrate
containers.

Cue: The orchestration wars..

But, really we only
have time to talk
about Kubernetes.

S kubectl apply -f podspec.yaml

Kubernetes API over HTTP: <endpoint>:8081/api/vl/services

Kubernetes APl Server

Node Node

kubelet kubelet

Kubelet — container runtime = gRPC endpoint implementing CRI

@estesp

\-/‘7

Kubernetes API

Key component of the control plane for K8s object interaction

e CRUD operations via a REST API over HTTP on common objects

o Examples: Pods, Nodes, Services, Deployments, Secrets, DaemonSet
o etcd distributed database and “object” watchers handle operational flow to workers

e The power of Kubernetes is in the extensibility of this declarative state system
o Can create and operate on new resource objects (CRDs)
o Custom controllers can handle operations related to a custom resource

dWS

@estesp ~_"

Kubernetes: The Container Runtime Interface (CRI)

Allows an OCI compliant container runtime to service the kubelet

e Today the CRI is the (only?) common API for runtimes

o However, CRI is not used outside of the Kubernetes ecosystem (today)
o Implementing the CRI requires a runtime to represent a “pod sandbox”, not just containers

e The dockershim implementation is deprecated and removed as of K8s 1.24
o All runtimes must provide a CRI-implementing endpoint:
m Today: cri-o, containerd, Docker (provided by Mirantis), and Singularity

dWS

@estesp ~_"

Kubernetes APl Summary:

> HTTP/REST client API for K8s object model
> CRI over gRPC for kubelet - runtime
> Containers and images are OCl compliant

@estesp

But what about an API for containers?

dWS

“Build. Ship. Run.”
(from an API perspective)

dWS

Do APIs exist for “Build, Ship and Run”?

Dockerfile is not a Yes! The In the Kubernetes context,
standard, but effectively a registry/distribution yes; the K8s API is clearly
de-facto standard. protocol is an OCI defined and adopted. At
standard today. the runtime layer only the
What really matters is the Coretm e S ol
output: build tools take Pushing and pulling
many inputs & provide images (and related CRI is the common factor
unique capabilities but all artifacts) is standardized among major runtimes.
produce OCI compliant and the API is stable and Underlying OCI types are
images. well-understood. standardized. aws

(@EN(N)) ~__"

Build

e Use of traditional Dockerfile + base image workflows remain significant
o Docker build, BuildKit, buildah, and many others
o The “API” is the Dockerfile de-facto syntax standard; innovation favors BuildKit
e Many tools now combine build workflows with K8s dev and deployment
Skaffold
Tekton
Kaniko

.and many vendor tools that integrate CI/CD, GitOps, etc. with traditional build operations
e Interesting projects

o “ko” - static Go binary build and push integrated with many other tools
o Buildpacks (CNCF)
o dagger.io

O O O O

dWS

@estesp ~_"

Ship

@estesp

Given the common registry/distribution API and common format (OCI) most
build tools directly handle the “ship” step to any OCI compliant registry

o All the build tools listed on the last slide support pushing images to cloud services, on-prem, or
self-hosted registries

Innovations around “ship” will most likely come via “artifacts” support

o Signing support: cosign/sigstore & Notary v2
o Software Bill of Materials (SBOM)
o Bundling (images + Helm charts + ?)

Artifact and signing support are being collaborated on in various OCI and CNCF
working groups, hopefully leading to common APIs and common formats

dWS

\/‘7

Run

e KS8s or something else? e Stay in the CNCF/K8s ecosystem?
o With Kubernetes, you will have many o Build/extend/integrate with the
options for additional abstractions, Kubernetes API/control plane
depending on managed service, o Common API, broad adoption means
roll-your-own, etc. APIs will be lots of building blocks & integrations
common across tools (e.g. K8s API, e Container runtime support:
Knative, OpenFaaS, CF, ..) o Easy path: CRI support/integration
e Non-K8s container orchestration within K8s context
o Google Cloud Run o No clean option for integrating with
o AWS Fargate/AWS EC2 >] specific runtimes; potential at
o Hashicorp Nomad lowest layer (runc/OCI hooks) but has
o Cycleio, Azure Container Instances drawbacks aW S

@estesp ~__")

Decision Points

> Docker engine & API still a valid single node solution

Lots of tools/integrations, compose, and podman implements AP/
Nerdctl+containerd providing a similar (client) experience sans Docker

> Kubernetes provides the most adopted platform for tools/APIs
Allows for broad standardization from developer toolsuite to production

> Most likely will adopt other APIs adjacent to K8s or containers
Cloud provider, infrastructure platform, cloud services (storage, network)

The API Future

Significant innovation around runtimes/APIs will stay in Kubernetes

e SIG-Node, Kubelet, and OCI communities will innovate up through the stack to
enhance container capabilities

o KEDPs for user namespaces, checkpoint/restore, swap support
o Bonus that work done at these layers is implemented in all CRI runtimes and exposed via common
APIs

e No clear path to commonality at the runtime layer itself

o Effectively two main camps: Docker/containerd/runc or cri-o/podman/buildah/crun
o Different design ideologies mean no real path to a common API for runtimes outside of CRI

dWS

@estesp ~_"

Thank You!

Phil Estes, Principal Engineer

Container Runtime Leader
Amazon Web Services
Maintainer, containerd

OCI Technical Oversight
Board member aWS
v,

