
APIs at scale

Matthew Clark

@matthew1000

Paul Caporn

@drpacman72

Designing for frontends

Designing for change

Designing for scale

Designing for validation

BBC News, the #1 most popular
news site in the world

Source: Press Gazette / Similalrweb
https://tinyurl.com/most-popular-news

0 200 400 600 800 1000 1200 1400

NY Times

Daily Mail

Google News

CNN

MSN

BBC

Global visits to News sites, January
2022

Source: Ofcom
https://tinyurl.com/ofcom-report-2021

BBC iPlayer, the #2 most popular
online video service in the UK

0% 10% 20% 30% 40% 50% 60% 70%

All 4

YouTube Channels

ITV Hub

Amazon Prime

iPlayer

Netflix

% of UK homes cosuming TV/film
video service

Over 100 APIs power BBC Online

API name primary response type Compute type
directly powers
audienc
experience?

Publicly advertised?
Open to
world?

Access control
Request
interface type

Has event-driven?

App Business Layer- News JSON FABL Yes No Yes None HTTP No

App Business Layer - Sport JSON FABL Yes No Yes None HTTP No

Account Identity Command
Service

JSON EC2 Yes No No Certificate HTTP No

Account token JSON EC2 Yes No No Cookie HTTP No

APPW JSON S3 No No No IAM S3 Yes

Archive Services API JSON Serverless No Yes Yes Key HTTP No

Ares JSON EC2 No No No Certificate HTTP No

Article domain JSON FABL No No No Certificate HTTP No

Audiences Portal API JSON EC2 No No No Certificate HTTP No

BBC Ideas JSON Morph Yes No No Certificate HTTP Yes

BBC Live JSON Morph Yes No Yes None HTTP Yes

Belfrage Multiple EC2 Yes No No None HTTP Yes

Binary Store Multiple EC2 Yes No Yes None HTTP No

Blocks (like Arts) JSON Morph Yes No No Certificate HTTP Yes

Broadcast interactive data JSON EC2 No No Yes Certificate HTTP Yes

Camino (News recs) JSON EC2 No No No Certificate HTTP Yes

Comments JSON Yes No Yes Token HTTP No

Content Summaries JSON FABL No No No Certificate HTTP No

Cosmos API JSON EC2 No No No Certificate HTTP No

Counting Service JSON Serverless Yes No Yes None HTTP Yes

CPS Content API XML EC2 No No No Certificate HTTP Yes

Server-
less
33%

Server
67%

GraphQL
4%

XML
7%

JSON
62%

Other
27%

Event-driven
33%

Request-

driven
67%

Mutual TLS
52%

Access key
14%

Public
30%

Other
4%

How many are
serverless?

Event or
request-
driven?

What means of
access control?

What response
format?

Designing for frontends

Micro-frontend API for TV’s

TV eco-system is
fragmented (long tail)

Code using the API had
sprawled…

Monolithic, spaghetti code

Micro-frontend API for TV’s

• Launch a kids app!

• Renew and iterate on the UI!

• But unclear boundaries / lack of a
clear API

Micro-frontend API for TV’s

“One Love” project – enabling decoupled development

Micro-frontend API for TV’s

Component API – A small surface, clear separation of concerns

Micro-frontend API for TV’s

Enabler for development of rich, data driven UI components in isolation

Micro-frontend API for TV’s

Enabler for development of rich, data driven UI components in isolation

Micro-frontend API for TV’s

Enabler for development of rich, data driven UI components in isolation

API

APIs doing one thing well

Considering the…

• Data

• Scaling

• Restrictions

• Security

• Clients

Website

Video page

Home page

Article page

Article

Curation

Video

App

App

Backend for frontend

Application Domain

Thanks, X-ray

Multiple teams → inconsistency

"title": "Pengiuns in Antarctic set up marching band"

"headline": "Pengiuns in Antarctic set up marching band"

"timestamp": 1648399482000

"firstPublished": "2022-03-27T11:49:00.000Z"

"link": "https://www.bbc.co.uk/news/uk-wales-60589511"

"link":{

"url": "https://www.bbc.co.uk/news/uk-wales-60589511"

}

→ Have conventions

Designing APIs for change

IBL – Product as an API

The iPlayer Business Layer (IBL) API is...

• The source of truth for all Product concepts

• The source of truth for content object presence and order

• Not opinionated about the UI

The personalised version of the API is exposed over GraphQL

IBL – Product as an API

Every property exposed has a cost once published

Image - https://www.flickr.com/photos/blmnevada/15519491237/in/photolist-pDps48

IBL – Product as an API

• Know the purpose of your API

• Design explicitly for your clients
use cases

• Limit your supported consumers
to those use cases

• Persisted GraphQL queries can
help manage evolution!

Handling API change

{

"id": "urn:bbc:article:123",

"url": "https://www.bbc.com/news/articles/123",

"firstPublished": "2022-03-27T11:49:00.000Z",

"title": "Duck swims around the world",

}

<image deprecated="true" deprecated_since="2014-07-09"

replaced_by="mixin=images" url="http://..."/>

image: String @deprecated(reason:

"image is deprecated. Use imageUrl instead.")

"category": "nature",

"categories": ["nature", "travel"],

Actual BBC API
example

GraphQL
schema

API versioning

https://api.twitter.com/1.1/statuses/lookup.json

https://api.twitter.com/2/tweets

Version the
whole API…

Or just one end-
point…

Example from
AWS S3 API

Many clients

API v1Client

Client

Client

Client

Client

API v2

From: Joe Developer

To: User d-list

Subject: New API Version

You must upgrade!

The old one will be
switched off, July 1

Don’t worry!

The original API will
continue working
indefinitely.

Creating a facade

API v1

API v2

Client

Client

Client

Client

Client
API v1 facade

Know who’s involved

Your
developers

Client’s
developers

Your
stakeholders

Client’s
stakeholders

Suggested
priority

Designing APIs for scale

A broadcast Denial of Service attack

Source: https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

• Leverage CDN edge functions

• Statically pre-published
responses per device to S3

• Device categorization in
lambda@edge

• Augment with dynamic values

• But what about the next hop…?

Serverless Launch

Fallbacks - failure as a first class citizen

• Fallbacks - planning for failure as a first class part of the API design, not
an afterthought

• What do fallbacks need to do?
• Provides schema compliant lighter responses

• Supports context sensitivity

• Enable scale by offloading

• Trade offs, trade offs everywhere

• Availability over degraded features and timeliness of content

• Polling vs event driven publishing

Serving Fallbacks

Serving Fallbacks

Serving Fallbacks

Serving Fallbacks

Serving Fallbacks

OVER PROVISION! OVER PROVISION!

A third of the
BBC’s pages
are rendered
using
serverless
(including the
APIs that
power them)

If using AWS, the
CDK patterns
make serverless
API development
straightforward

https://github.com/cdk-
patterns/serverless

Low-code / no-code APIs

https://github.com/cdk-patterns/serverless/blob/main/the-dynamo-streamer/README.md

Scaling instantly when you need it

cache cache cache Report changed
content

Lambda response times

User

Website

Serverless

Application API

Serverless

Domain API

Serverless

Database

Server

The page and
the onward
journeys are
cached
separately

Manifest API

TODO

{

"id" : "/news/123456",

"lastUpdated" : 1648498767000,

"title" : "Parrot learns seven times table"

},

{

"id" : "/news/234567",

"lastUpdated" : 1648496828000,

"title" : ”Studies show fish happier on Fridays"

},

{

"id" : "/news/345678",

"lastUpdated" : 1648497939000,

"title" : "Herd of elephants found in Norway"

}

One fast-updating, minimally cached API can provide
references to another API with more immutable
data

{

"id" : "/news/123456",

"lastUpdated" : 1648498767000,

"body" : "A parot in Italy has

learned to count in sevens. Billy, a

female macaw, regularly recites the

seven times table up to 105. Lorem

ipsum dolor sit amet, consectetur

adipiscing elit, sed do eiusmod

tempor incididunt ut labore et

dolore magna aliqua. Ut enim ad

minim veniam, quis nostrud

exercitation ullamco laboris nisi ut

aliquip ex ea commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum. Lorem ipsum

dolor sit amet, consectetur

adipiscing elit, sed do eiusmod

tempor incididunt ut labore et

dolore magna aliqua. Ut enim ad

minim veniam, quis nostrud

Designing APIs for validation

Schemas for the win!

• Provide a contract

• Enable stubbing by client teams

• Enable value adds to be built…

Unreliable Upstream

Like your upstream services but
worse…

• Data that meets their API

• Random response times and
occasional errors

• Response profiles with configured
delays and error rates.

Designing for frontends

Designing for change

Designing for scale

Designing for validation

Summary

Focus on doing one thing
well

Matthew Clark

@matthew1000

Paul Caporn

@drpacman72

Treat failure as a first-
class citizen

Serverless helps APIs with
speed and scale

Know your clients

