
Mature	microservices	and	
how	to	operate	them

Sarah	Wells	
Technical	Director	for	Operations	&	Reliability,	The	Financial	Times	
@sarahjwells





@sarahjwells 

https://www.ft.com/stream/
c47f4dfc-6879-4e95-accf-ca8cbe6a1f69



@sarahjwells 

https://www.ft.com/companies	



@sarahjwells 

Problem:	we’d	set	up	a	redirect	to	a	
page	which	didn’t	exist



@sarahjwells 

We	weren’t	sure	how	to	fix	the	data	
via	the	url	management	tool







@sarahjwells 

We	got	it	fixed



@sarahjwells 

Polyglot	architectures	are	great	-	
until	you	need	to	work	out	how	
*this*	database	is	backed	up









@sarahjwells 

Microservices	are	more	
complicated	to	operate	and	
maintain



@sarahjwells 

Why	bother?







@sarahjwells 

“Experiment”	for	most	
organizations	really	means	“try”		

Linda	Rising		
Experiments:	the	Good,	the	Bad	and	the	Beautiful



Overlap tests by componentising the barrier



@sarahjwells 

Releasing	changes	frequently	
doesn’t	just	‘happen’



@sarahjwells 

Done	right,	microservices	enable	
this



@sarahjwells 

The	team	that	builds	the	system	
*has*	to	operate	it	too



@sarahjwells 

What	happens	when	teams	move	
on	to	new	projects?



@sarahjwells 

Your	next	legacy	system	will	be	
microservices	not	a	monolith



@sarahjwells 

Optimising	for	speed

Operating	microservices

When	people	move	on



@sarahjwells 

Optimising	for	speed





Measure High performers

Delivery lead time



Measure High performers

Delivery lead time Less than one hour

“How	long	would	it	take	you	to	
release	a	single	line	of	code	to	
production?”



Measure High performers

Delivery lead time Less than one hour

Deployment frequency



Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand



Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand

Time to restore service



Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand

Time to restore service Less than one hour



Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand

Time to restore service Less than one hour

Change fail rate



Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand

Time to restore service Less than one hour

Change fail rate 0 - 15%



@sarahjwells 

High	performing	organisations	
release	changes	frequently



@sarahjwells 

Continuous	delivery	is	the	
foundation



“If	it	hurts,	do	it	
more	frequently,	
and	bring	the	pain	
forward.”



@sarahjwells 

Our	old	build	and	deployment	
process	was	very	manual…





@sarahjwells 

You	can’t	experiment	when	you	do	
12	releases	a	year



@sarahjwells 

1.	An	automated	build	and	release	
pipeline



@sarahjwells 

2.	Automated	testing,	integrated	
into	the	pipeline



@sarahjwells 

3.	Continuous	integration



@sarahjwells 

If	you	aren’t	releasing	multiple	
times	a	day,	consider	what	is	
stopping	you



@sarahjwells 

You’ll	probably	have	to	change	the	
way	you	architect	things



@sarahjwells 

Zero	downtime	deployments:	
-	sequential	deployments	
-	schemaless	databases



@sarahjwells 

In	hours	releases	mean	the	people	
who	can	help	are	there



@sarahjwells 

You	need	to	be	able	to	test	and	
deploy	your	changes	independently



@sarahjwells 

You	need	systems	-	and	teams	-	to	
be	loosely	coupled



@sarahjwells 

Done	right,	microservices	are	
loosely	coupled



@sarahjwells 

Processes	also	have	to	change



@sarahjwells 

Often	there	is	‘process	theatre’	
around	things	and	this	can	safely	be	
removed



@sarahjwells 

Change	approval	boards	don’t	
reduce	the	chance	of	failure



@sarahjwells 

Filling	out	a	form	for	each	change	
takes	too	long



@sarahjwells 

How	fast	are	we	moving?







@sarahjwells 

Releasing	250	times	as	often



@sarahjwells 

Changes	are	small,	easy	to	
understand,	independent	and	
reversible



<1%	failure	rate

~16%	failure	rate



@sarahjwells 

Optimising	for	speed

Operating	microservices





@sarahjwells 

There	are	patterns	and	approaches	
that	help



@sarahjwells 

Devops	is	essential	for	success	



@sarahjwells 

You	can’t	hand	things	off	to	another	
team	when	they	change	multiple	
times	a	day



@sarahjwells 

High	performing	teams	get	to	make	
their	own	decisions	about	tools	and	
technology



@sarahjwells 

Delegating	tool	choice	to	teams	
makes	it	hard	for	central	teams	to	
support	everything



@sarahjwells 

Make	it	someone	else’s	problem



https://medium.com/wardleymaps



@sarahjwells 

Buy	rather	than	build,	unless	it’s	
critical	to	your	business



@sarahjwells 

Work	out	what	level	of	risk	you’re	
comfortable	with



@sarahjwells 

“We’re	not	a	hospital	or	a	power	
station”



@sarahjwells 

We	value	releasing	often	so	we	can	
experiment	frequently



@sarahjwells 

Accept	that	you	will	generally	be	in	
a	state	of	‘grey	failure’





@sarahjwells 

Retry	on	failure:	
-	backoff	before	retrying	
-	give	up	if	it’s	taking	too	long



@sarahjwells 

Mitigate	now,	fix	tomorrow



@sarahjwells 

How	do	you	know	something’s	
wrong?



@sarahjwells 

Concentrate	on	the	business	
capabilities



@sarahjwells 

Synthetic	monitoring











@sarahjwells 

No	data	fixtures	required



@sarahjwells 

Also	helps	us	know	things	are	
broken	even	if	no	user	is	currently	
doing	anything



@sarahjwells 

Make	sure	you	know	whether	
*real*	things	are	working	in	
production



@sarahjwells 

Our	editorial	team	is	inventive



@sarahjwells 

What	does	it	mean	for	a	publish	to	
be	‘successful’?











@sarahjwells 

Build	observability	into	your	system



@sarahjwells 

Observability:	can	you	infer	what’s	
going	on	in	the	system	by	looking	
at	its	external	outputs?



@sarahjwells 

Log	aggregation





@sarahjwells 

Metrics



@sarahjwells 

Keep	it	simple:	
-	request	rate	
-	latency	
-	error	rate



@sarahjwells 

You’ll	always	be	migrating	
*something*



@sarahjwells 

Doing	anything	150	times	is	painful



@sarahjwells 

Deployment	pipelines	need	to	be	
templated



@sarahjwells 

Use	a	service	mesh



@sarahjwells 

You’ll	have	services	that	haven’t	
been	released	for	years



@sarahjwells 

But	you	don’t	want	to	find	out	your	
service	can’t	be	released	when	you	
most	need	to	do	it



@sarahjwells 

Build	everything	overnight?



@sarahjwells 

Optimising	for	speed

Operating	microservices

When	people	move	on



@sarahjwells 

Every	system	must	be	owned



@sarahjwells 

If	you	won’t	invest	enough	to	keep	
it	running	properly,	shut	it	down



@sarahjwells 

Keeping	documentation	up	to	date	
is	a	challenge



@sarahjwells 

We	started	with	a	searchable	
runbook	library





@sarahjwells 

System	codes	are	very	helpful



@sarahjwells 

We	needed	to	represent	this	stuff	as	
a	graph







@sarahjwells 

Helps	if	you	can	give	people	
something	in	return







@sarahjwells 

Practice



“If	it	hurts,	do	it	
more	frequently,	
and	bring	the	pain	
forward.”



@sarahjwells 

Failovers,	database	restores



@sarahjwells 

Chaos	engineering	

https://principlesofchaos.org/



@sarahjwells 

Understand	your	steady	state	
Look	at	what	you	can	change	-	minimise	the	blast	radius	
Work	out	what	you	expect	to	see	happen	
Run	the	experiment	and	see	if	you	were	right



@sarahjwells 

Wrapping	up…



@sarahjwells 

Building	and	operating	
microservices	is	hard	work



@sarahjwells 

You	have	to	maintain	knowledge	of	
services	that	are	live



@sarahjwells 

Plan	now	for	the	future	of	legacy	
microservices



@sarahjwells 

Remember:	it’s	all	about	the	
business	value	of	moving	fast



@sarahjwells 

Thank	you!


