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https://www.ft.com/stream/
c47f4dfc-6879-4e95-accf-ca8cbe6a1f69
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https://www.ft.com/companies	
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Problem:	we’d	set	up	a	redirect	to	a	
page	which	didn’t	exist
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We	weren’t	sure	how	to	fix	the	data	
via	the	url	management	tool







@sarahjwells 

We	got	it	fixed
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Polyglot	architectures	are	great	-	
until	you	need	to	work	out	how	
*this*	database	is	backed	up
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Microservices	are	more	
complicated	to	operate	and	
maintain
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Why	bother?
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“Experiment”	for	most	
organizations	really	means	“try”		

Linda	Rising		
Experiments:	the	Good,	the	Bad	and	the	Beautiful



Overlap tests by componentising the barrier
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Releasing	changes	frequently	
doesn’t	just	‘happen’
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Done	right,	microservices	enable	
this
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The	team	that	builds	the	system	
*has*	to	operate	it	too
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What	happens	when	teams	move	
on	to	new	projects?
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Your	next	legacy	system	will	be	
microservices	not	a	monolith
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Optimising	for	speed

Operating	microservices

When	people	move	on
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Optimising	for	speed





Measure High performers

Delivery lead time



Measure High performers

Delivery lead time Less than one hour

“How	long	would	it	take	you	to	
release	a	single	line	of	code	to	
production?”
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Measure High performers

Delivery lead time Less than one hour

Deployment frequency On demand

Time to restore service Less than one hour

Change fail rate 0 - 15%
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High	performing	organisations	
release	changes	frequently
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Continuous	delivery	is	the	
foundation



“If	it	hurts,	do	it	
more	frequently,	
and	bring	the	pain	
forward.”
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Our	old	build	and	deployment	
process	was	very	manual…
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You	can’t	experiment	when	you	do	
12	releases	a	year
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1.	An	automated	build	and	release	
pipeline
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2.	Automated	testing,	integrated	
into	the	pipeline
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3.	Continuous	integration
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If	you	aren’t	releasing	multiple	
times	a	day,	consider	what	is	
stopping	you
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You’ll	probably	have	to	change	the	
way	you	architect	things
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Zero	downtime	deployments:	
-	sequential	deployments	
-	schemaless	databases
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In	hours	releases	mean	the	people	
who	can	help	are	there
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You	need	to	be	able	to	test	and	
deploy	your	changes	independently
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You	need	systems	-	and	teams	-	to	
be	loosely	coupled
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Done	right,	microservices	are	
loosely	coupled
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Processes	also	have	to	change
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Often	there	is	‘process	theatre’	
around	things	and	this	can	safely	be	
removed
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Change	approval	boards	don’t	
reduce	the	chance	of	failure
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Filling	out	a	form	for	each	change	
takes	too	long
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How	fast	are	we	moving?
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Releasing	250	times	as	often
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Changes	are	small,	easy	to	
understand,	independent	and	
reversible



<1%	failure	rate

~16%	failure	rate
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Optimising	for	speed

Operating	microservices
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There	are	patterns	and	approaches	
that	help
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Devops	is	essential	for	success	
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You	can’t	hand	things	off	to	another	
team	when	they	change	multiple	
times	a	day
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High	performing	teams	get	to	make	
their	own	decisions	about	tools	and	
technology



@sarahjwells 

Delegating	tool	choice	to	teams	
makes	it	hard	for	central	teams	to	
support	everything
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Make	it	someone	else’s	problem



https://medium.com/wardleymaps
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Buy	rather	than	build,	unless	it’s	
critical	to	your	business
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Work	out	what	level	of	risk	you’re	
comfortable	with
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“We’re	not	a	hospital	or	a	power	
station”
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We	value	releasing	often	so	we	can	
experiment	frequently
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Accept	that	you	will	generally	be	in	
a	state	of	‘grey	failure’
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Retry	on	failure:	
-	backoff	before	retrying	
-	give	up	if	it’s	taking	too	long
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Mitigate	now,	fix	tomorrow
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How	do	you	know	something’s	
wrong?
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Concentrate	on	the	business	
capabilities
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Synthetic	monitoring
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No	data	fixtures	required
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Also	helps	us	know	things	are	
broken	even	if	no	user	is	currently	
doing	anything
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Make	sure	you	know	whether	
*real*	things	are	working	in	
production
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Our	editorial	team	is	inventive
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What	does	it	mean	for	a	publish	to	
be	‘successful’?
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Build	observability	into	your	system
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Observability:	can	you	infer	what’s	
going	on	in	the	system	by	looking	
at	its	external	outputs?
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Log	aggregation
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Metrics
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Keep	it	simple:	
-	request	rate	
-	latency	
-	error	rate
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You’ll	always	be	migrating	
*something*
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Doing	anything	150	times	is	painful
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Deployment	pipelines	need	to	be	
templated
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Use	a	service	mesh
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You’ll	have	services	that	haven’t	
been	released	for	years
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But	you	don’t	want	to	find	out	your	
service	can’t	be	released	when	you	
most	need	to	do	it
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Build	everything	overnight?
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Optimising	for	speed

Operating	microservices

When	people	move	on
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Every	system	must	be	owned
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If	you	won’t	invest	enough	to	keep	
it	running	properly,	shut	it	down
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Keeping	documentation	up	to	date	
is	a	challenge
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We	started	with	a	searchable	
runbook	library
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System	codes	are	very	helpful
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We	needed	to	represent	this	stuff	as	
a	graph
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Helps	if	you	can	give	people	
something	in	return
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Practice



“If	it	hurts,	do	it	
more	frequently,	
and	bring	the	pain	
forward.”
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Failovers,	database	restores



@sarahjwells 

Chaos	engineering	

https://principlesofchaos.org/
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Understand	your	steady	state	
Look	at	what	you	can	change	-	minimise	the	blast	radius	
Work	out	what	you	expect	to	see	happen	
Run	the	experiment	and	see	if	you	were	right
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Wrapping	up…
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Building	and	operating	
microservices	is	hard	work
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You	have	to	maintain	knowledge	of	
services	that	are	live
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Plan	now	for	the	future	of	legacy	
microservices
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Remember:	it’s	all	about	the	
business	value	of	moving	fast
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Thank	you!


