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DDoS Attack
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Unexpected Behaviour
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Unexpected Behaviour
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Unexpected Behaviour

!6

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node



Copyright © 2019 HashiCorp

‘Flapping’ Nodes
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▪ Healthy node being marked as failed …  
    … and healthy again, soon after 

▪ Logs show it was never actually unhealthy 
▪ Even other healthy nodes think it is failed
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Many Scenarios ... Common Cause
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▪ DDoS Attack 
▪ Overloaded web servers 
▪ Underprovisioned video transcode servers 
▪ Burstable VMs (AWS T2.micro etc) exhausting credits 
▪ … 
Common cause: Resource depleted nodes making other, 
healthy nodes appear unhealthy
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Using randomization to build robust and scalable systems 

Agenda
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Using randomization to build robust and scalable systems 

Leveraging academic research in production systems

Agenda + Meta-Agenda
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Jon Currey - Industrial Researcher
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Dryad/DryadLINQ  

Distributed Dataflow
Quincy Scheduler
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InfluencedUsed by

PTask/Dandelion GPU  
Cluster Computation
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Production Engineering
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School of Hard Knocks
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HashiCorp
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▪ Consul 
▪ KV store 
▪ Strong consistency via Raft protocol 
▪ mesh networking ... 

▪ Serf 
▪ Service discovery (weakly consistent) 
▪ Service and node health checks 
▪ Network distance 
▪ ... 

▪memberlist 
▪ Group membership 
▪ Failure detection

Consul, Serf ... and memberlist too
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▪ Robust 
▪ To both node and network failures  

▪ Scalable  

▪ Simple 
▪ Easier to implement >> Less likelihood of bugs 
▪ Easier to manage >> Less likelihood of misconfiguration

Discovery and Failure-Detection Requirements
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Product Requirements and Research
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Product requirements 

Criteria for research  
discovery and evaluation 
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Product Requirements and Research
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Product requirements 

Criteria for research  
discovery and evaluation 

Consuming research will inform your product decisions 
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Research-Aware Design Process
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▪ Research section in design 
documents (if relevant) 
▪ Collate papers - with backlog 
▪ Summarize 
▪ Pros and cons 
▪ Trade-offs made 

▪ Evaluate against  
product requirements  

▪ c.f. competitive and  
market analysis



Copyright © 2019 HashiCorp

▪ Google  

▪ Research Databases (many with recommendation systems) 
▪ arXiv, DBLP, Google Scholar, ResearchGate, Semantic Scholar ... 

▪Websites 
▪ Associations and publishers: ACM, IEEE, USENIX, ... 
▪ Labs + professors + students 
▪ Personal blogs 

▪ Twitter

Research on the Internet
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▪ Entities (graph nodes) 
▪ Person 
▪ Advisor, Student, ... 
▪ Institution 
▪ University, Company, ... 
▪ Paper 
▪ Conference 

▪ Relationships (graph edges) 
▪ Advised by 
▪ Published at 
▪ Cites (reference)

Research as a Knowledge Graph
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researchgraph.org
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Research as a Knowledge Graph
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▪ Dynamic group of members ('processes') 

▪ Discovery 
▪ New member joins group... 
▪ Discovers other members of the group 
▪ Discovered by other members 

▪ Failure Detection

Group Membership Protocols
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Peer Failure Detection
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▪ Processes monitor one another 
▪ No special nodes to administer  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Peer Failure Detection
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▪ Processes monitor one another 
▪ No special nodes to administer  

▪Redundant monitoring  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Simple But Not Scalable
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Heartbeat Membership and  
Failure Detection (circa 1996) 
▪ Every node sends a regular 

heartbeat message ...  
to every other node ('full mesh') 

▪Receive a heartbeat from you? 
▪ "You're alive" 

▪Miss (a few?) heartbeats 
▪ "You're dead!" 

▪Message load O(n2)
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SWIM (IEEE DSN 2002)
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▪ Scalable 

▪ Fixed per node number of messages, not ∝ # nodes 

▪ Message load O(n), not O(n2)  

▪Weakly-consistent 
▪ Nodes don't all have to see same state simultaneously 
▪ Converge to same view (quickly)  

▪ Infection-style 
▪ Gossip (aka 'epidemic') spread of information 

▪Membership

SWIM: What's In A Name?
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For a Detailed Explanation …
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SWIM Protocol Components
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SWIM's Use of Randomization
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1 random peer  
per round

3 random peers  
per round

3 random peers per update 
(but piggybacked +  

de-duped via  
'incarnation number')



Copyright © 2019 HashiCorp

Randomization Keeps SWIM Robust (and Simple)
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Reduce communication (for scalability) 
without randomization? 
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Randomization Keeps SWIM Robust (and Simple)
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Reduce communication (for scalability) 
without randomization? 
• Greatly increased chance of missed 

failures (aka 'false negatives') 
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Randomization Keeps SWIM Robust (and Simple)
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Reduce communication (for scalability) 
without randomization? 
• Greatly increased chance of missed 

failures (aka 'false negatives') 

With randomization 
• Each node is still checked by every 

other node ... just not so often 
▪Much less chance of false negatives 
▪ No special nodes or node hierarchies  

to maintain after node failures
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SWIM Has Worked Out
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18 Months Later ...
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Network Distance for Load Balancing
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Nearest Neighbor Routing

Web Server

API Server

API ServerAPI Server
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Network Distance for Disaster Recovery
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Datacenter Failover

?
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Network Distance
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Vivaldi: Network Coordinates
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Spring 'Dynamic Relaxation' Model
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Peer
Peer

Peer

Peer
Peer

▪ Imagine each pair of peers connected by a spring... 
▪ Compressed together ... 
▪ But natural length of each spring is RTT between those two peers...
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Spring 'Dynamic Relaxation' Model
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Spring 'Dynamic Relaxation' Model
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Spring 'Dynamic Relaxation' Model
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Spring 'Dynamic Relaxation' Model
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Spring 'Dynamic Relaxation' Model
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▪ Random pattern of communication really helps 

▪ Ring or tree topology would measure only a fraction of the paths

SWIM Probe Messages Give Us RTT For Free
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▪ SWIM's simple, robust scalability 

▪ RTT's for Network Distance for free

Randomization: Two Ways We Win
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▪ Found multiple alternative solutions  

▪ Some papers were follow up work ('responses') to Vivaldi 

▪ Found via citations (Google Scholar) 
▪ Helped identify issues Vivaldi originally missed 
▪ Provided a toolkit of possible extensions 
▪ Defined metrics we could use to evaluate the alternatives

Mining the Research Graph
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Vivaldi In Consul/Serf In Depth
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Wait ... What About the Flappers?
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Works around slow/dead 
intermediaries... 

SWIM's Achilles Heel
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Works around slow/dead 
intermediaries... 

But still assumes some 
messages are processed in  
a timely manner 
▪ No slow node originating a  

probe or suspicion 
▪Must process Ack and Alive 

messages

SWIM's Achilles Heel
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For a Detailed Explanation …
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▪ Failure Detector has expectations about messages it will receive 
▪ Use absence of expected messages to  

  increase timeouts at slow members

Lifeguard Heuristics Based On ‘Local Health’
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Reduction in False Positives
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Randomization Is Key To Lifeguard Too
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▪ Every node checked by every other 
node... just not so often
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Randomization Is Key To Lifeguard Too
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▪ Every node checked by every other 
node... just not so often 

▪ If we slow down 3 out of 100 nodes,  
97 nodes are still checking  
all 100 of them 

▪ Graceful degradation 
▪ Gets better as group size increases
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▪ SWIM's simple, robust scalability 

▪ RTT's for Network Distance for free 

▪ Lifeguard's defense against SWIM's weak spot

Randomization: Two Three Ways We Win
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▪ Picked up literature search thanks to backlog 

▪ No one had reported on this issue but... 
▪ Gave us the metrics to use to investigate 
▪ Showed us good benchmarking experiments 

▪ Benchmarks have persistent value 
▪ Regression testing, competitive analysis, ... 
▪ Backbone of a paper

Research Also Helped With Lifeguard ... Eventually
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Lifeguard (arXiv and IEEE DSN 2018)
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Lifeguard (arXiv and IEEE DSN 2018)
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Developed iteratively over 18 months... 

• Internal benchmarking report 
• Internal white paper (engineering, sales, ...) 
• arXiv.org 'pre-print' 
• Published version 
• Blog posts, Tweets, conference talks ...
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Publication Has Embedded Us In the Graph
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▪ Better algorithms 

▪ Relevant metrics 

▪ Talent 
▪ Interns and full-time 

▪ Reputation 
▪ Customers and potential customers 
▪ Internal >> employee satisfaction

Benefits of Research (Tell Your Boss ...)
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▪ Papers We Love (PWL) 
▪ Github repo + Meetups 

▪ The Morning Paper by Adrian Colyer 
▪ Blog + email 

▪ At work 
▪ Reading group 
▪ Brownbag PWL 
▪ Colleagues with research experience?

Where to Begin?
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▪ Ask questions 
▪ Email, Twitter 

▪ Attend conferences 
▪ Discuss your open problems 
▪ Blog 
▪ Twitter 

▪ PhD candidate interns 

▪ Employees with research experience 
▪ PhD, Masters or started graduate school?

Getting Involved in Research
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▪Mutual benefit 
▪ Your (relevant) problem/data == goldmine for their work 
▪Work done during internship is your Intellectual Property 

▪ Approach students and advisors 
▪ Poster sessions at conferences 
▪ Email

PhD Candidate Interns
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Researchers are People Too!
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Thank you.

hello@hashicorp.comwww.hashicorp.com
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▪ Pseudo-randomization 
▪ Go math/rand 
▪ Seeded from /dev/urandom 

▪ Each node cycles through all the nodes it knows about 
▪ Only then talk to same node a second time 

▪ New nodes inserted into its memberlist at random position

Controlled Use of Randomization
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Weak Consistency Is Sometimes Enough
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