
Copyright © 2019 HashiCorp

Jon Currey, HashiCorp

Using Randomized
Communication for  
Robust, Scalable Systems

Copyright © 2019 HashiCorp

Service Discovery and Failure Detection

!2

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Requests Responses

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

�2

Copyright © 2019 HashiCorp

DDoS Attack

!3

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

Copyright © 2019 HashiCorp

Unexpected Behaviour

!4

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

Copyright © 2019 HashiCorp

Unexpected Behaviour

!5

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

Copyright © 2019 HashiCorp

Unexpected Behaviour

!6

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

Copyright © 2019 HashiCorp

‘Flapping’ Nodes

!7

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

▪ Healthy node being marked as failed …  
 … and healthy again, soon after

▪ Logs show it was never actually unhealthy
▪ Even other healthy nodes think it is failed

Copyright © 2019 HashiCorp

Many Scenarios ... Common Cause

!8

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

▪ DDoS Attack
▪ Overloaded web servers
▪ Underprovisioned video transcode servers
▪ Burstable VMs (AWS T2.micro etc) exhausting credits
▪ …
Common cause: Resource depleted nodes making other,
healthy nodes appear unhealthy

Copyright © 2019 HashiCorp

Using randomization to build robust and scalable systems

Agenda

!9

Copyright © 2019 HashiCorp

Using randomization to build robust and scalable systems

Leveraging academic research in production systems

Agenda + Meta-Agenda

!10

Copyright © 2019 HashiCorp

Jon Currey - Industrial Researcher

!11

Copyright © 2019 HashiCorp

 
Dryad/DryadLINQ  

Distributed Dataflow
Quincy Scheduler

�12

InfluencedUsed by

PTask/Dandelion GPU  
Cluster Computation

Copyright © 2019 HashiCorp �13

Production Engineering

Copyright © 2019 HashiCorp �14

School of Hard Knocks

Copyright © 2019 HashiCorp

HashiCorp

!15

Copyright © 2019 HashiCorp

▪ Consul
▪ KV store
▪ Strong consistency via Raft protocol
▪ mesh networking ...

▪ Serf
▪ Service discovery (weakly consistent)
▪ Service and node health checks
▪ Network distance
▪ ... 

▪memberlist
▪ Group membership
▪ Failure detection

Consul, Serf ... and memberlist too

!16

Copyright © 2019 HashiCorp

▪ Robust
▪ To both node and network failures  

▪ Scalable  

▪ Simple
▪ Easier to implement >> Less likelihood of bugs
▪ Easier to manage >> Less likelihood of misconfiguration

Discovery and Failure-Detection Requirements

!17

Copyright © 2019 HashiCorp

Product Requirements and Research

!18

Product requirements

Criteria for research  
discovery and evaluation

Copyright © 2019 HashiCorp

Product Requirements and Research

!19

Product requirements

Criteria for research  
discovery and evaluation

Consuming research will inform your product decisions

Copyright © 2019 HashiCorp

Research-Aware Design Process

!20

▪ Research section in design
documents (if relevant)
▪ Collate papers - with backlog
▪ Summarize
▪ Pros and cons
▪ Trade-offs made

▪ Evaluate against  
product requirements

▪ c.f. competitive and  
market analysis

Copyright © 2019 HashiCorp

▪ Google  

▪ Research Databases (many with recommendation systems)
▪ arXiv, DBLP, Google Scholar, ResearchGate, Semantic Scholar ... 

▪Websites
▪ Associations and publishers: ACM, IEEE, USENIX, ...
▪ Labs + professors + students
▪ Personal blogs

▪ Twitter

Research on the Internet

!21

Copyright © 2019 HashiCorp

▪ Entities (graph nodes)
▪ Person
▪ Advisor, Student, ...
▪ Institution
▪ University, Company, ...
▪ Paper
▪ Conference

▪ Relationships (graph edges)
▪ Advised by
▪ Published at
▪ Cites (reference)

Research as a Knowledge Graph

!22

researchgraph.org

Copyright © 2019 HashiCorp

Research as a Knowledge Graph

!23

Copyright © 2019 HashiCorp

▪ Dynamic group of members ('processes') 

▪ Discovery
▪ New member joins group...
▪ Discovers other members of the group
▪ Discovered by other members 

▪ Failure Detection

Group Membership Protocols

!24

Copyright © 2019 HashiCorp

Peer Failure Detection

!25

▪ Processes monitor one another
▪ No special nodes to administer  

Copyright © 2019 HashiCorp

Peer Failure Detection

!26

▪ Processes monitor one another
▪ No special nodes to administer  

▪Redundant monitoring  

Copyright © 2019 HashiCorp

Simple But Not Scalable

!27

Heartbeat Membership and  
Failure Detection (circa 1996)
▪ Every node sends a regular

heartbeat message ...  
to every other node ('full mesh')

▪Receive a heartbeat from you?
▪ "You're alive"

▪Miss (a few?) heartbeats
▪ "You're dead!"

▪Message load O(n2)

Copyright © 2019 HashiCorp

SWIM (IEEE DSN 2002)

!28

Copyright © 2019 HashiCorp

▪ Scalable

▪ Fixed per node number of messages, not ∝ # nodes

▪ Message load O(n), not O(n2)  

▪Weakly-consistent
▪ Nodes don't all have to see same state simultaneously
▪ Converge to same view (quickly)  

▪ Infection-style
▪ Gossip (aka 'epidemic') spread of information 

▪Membership

SWIM: What's In A Name?

!29

Copyright © 2018 HashiCorp

For a Detailed Explanation …

�30

Copyright © 2019 HashiCorp

SWIM Protocol Components

!31

Failure Detector

A BAckDirect 
Probe

Indirect 
Probe

A B

Probe (UDP)

A B

D

C
Probe

Probe

Probe Req

Probe Req

Update Dissemination

A

D

F

B

E

C
Dead(B)

A B

D

C

Ack

1

2

3

Copyright © 2019 HashiCorp

SWIM's Use of Randomization

!32

Failure Detector

A BAckDirect 
Probe

Indirect 
Probe

A B

Probe (UDP)

A B

D

C
Probe

Probe

Probe Req

Probe Req

Update Dissemination

A

D

F

B

E

C
Dead(B)

A B

D

C

Ack

1

2

3

1 random peer  
per round

3 random peers  
per round

3 random peers per update 
(but piggybacked +  

de-duped via  
'incarnation number')

Copyright © 2019 HashiCorp

Randomization Keeps SWIM Robust (and Simple)

!33

Reduce communication (for scalability)
without randomization?

!33

Copyright © 2019 HashiCorp

Randomization Keeps SWIM Robust (and Simple)

!34

Reduce communication (for scalability)
without randomization?
• Greatly increased chance of missed

failures (aka 'false negatives')

!34

Copyright © 2019 HashiCorp

Randomization Keeps SWIM Robust (and Simple)

!35

Reduce communication (for scalability)
without randomization?
• Greatly increased chance of missed

failures (aka 'false negatives')

With randomization
• Each node is still checked by every

other node ... just not so often
▪Much less chance of false negatives
▪ No special nodes or node hierarchies  

to maintain after node failures

!35

Copyright © 2019 HashiCorp

SWIM Has Worked Out

!36

Copyright © 2019 HashiCorp

18 Months Later ...

!37

Copyright © 2019 HashiCorp

Network Distance for Load Balancing

!38

Nearest Neighbor Routing

Web Server

API Server

API ServerAPI Server

Copyright © 2019 HashiCorp

Network Distance for Disaster Recovery

!39

Datacenter Failover

?

Copyright © 2019 HashiCorp

Network Distance

!40

Copyright © 2019 HashiCorp

Vivaldi: Network Coordinates

!41

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!42

Peer
Peer

Peer

Peer
Peer

▪ Imagine each pair of peers connected by a spring...
▪ Compressed together ...
▪ But natural length of each spring is RTT between those two peers...

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!43

Peer
Peer

Peer

Peer Peer

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!44

Peer

Peer

Peer

Peer Peer

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!45

Peer

Peer

Peer

Peer Peer

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!46

Peer

Peer

Peer

Peer Peer

Copyright © 2019 HashiCorp

Spring 'Dynamic Relaxation' Model

!47

Peer

Peer

Peer

Peer

Peer

Copyright © 2019 HashiCorp

▪ Random pattern of communication really helps

▪ Ring or tree topology would measure only a fraction of the paths

SWIM Probe Messages Give Us RTT For Free

!48

Copyright © 2019 HashiCorp

▪ SWIM's simple, robust scalability

▪ RTT's for Network Distance for free

Randomization: Two Ways We Win

!49

Copyright © 2019 HashiCorp

▪ Found multiple alternative solutions  

▪ Some papers were follow up work ('responses') to Vivaldi

▪ Found via citations (Google Scholar)
▪ Helped identify issues Vivaldi originally missed
▪ Provided a toolkit of possible extensions
▪ Defined metrics we could use to evaluate the alternatives

Mining the Research Graph

!50

Copyright © 2019 HashiCorp

Vivaldi In Consul/Serf In Depth

!51

Copyright © 2019 HashiCorp

Wait ... What About the Flappers?

!52

System

Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node

Requests Responses

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node

Service Node Service Node Service Node Service Node Service Node Service Node Service Node

Service Node

�52

Copyright © 2019 HashiCorp

Works around slow/dead
intermediaries... 

SWIM's Achilles Heel

!53

A

D

F

B

E

C

Alive (B)A

D

F

B

E

C

Copyright © 2019 HashiCorp

Works around slow/dead
intermediaries... 

But still assumes some
messages are processed in  
a timely manner
▪ No slow node originating a  

probe or suspicion
▪Must process Ack and Alive

messages

SWIM's Achilles Heel

!54

A

D

F

B

E

C

Alive (B)A

D

F

B

E

C

Copyright © 2018 HashiCorp

For a Detailed Explanation …

�55

Copyright © 2019 HashiCorp

▪ Failure Detector has expectations about messages it will receive
▪ Use absence of expected messages to  

 increase timeouts at slow members

Lifeguard Heuristics Based On ‘Local Health’

!56

Time

Node

Probe
A

D

C

B

Ack? Probe 
Req

Acks?

Time

Probe 
Timeout

Max 
Timeout

Min 
Timeout

Ping+ 
Ack(s)

Missed  
Ack #1

Missed  
Ack #2

Refute 
Suspicion

Copyright © 2019 HashiCorp

Reduction in False Positives

!57

0

25

50

75

100

Regular SWIM 
(No Lifeguard)

LHA Probe  
Timeouts

LHA  
Suspicion  
Timeouts

Buddy  
System

Full Lifeguard

Total False Positives FPs @ Healthy Nodes

> 98% 
Reduction

Copyright © 2019 HashiCorp

Randomization Is Key To Lifeguard Too

!58

▪ Every node checked by every other
node... just not so often

!58

Copyright © 2019 HashiCorp

Randomization Is Key To Lifeguard Too

!59

▪ Every node checked by every other
node... just not so often

▪ If we slow down 3 out of 100 nodes,  
97 nodes are still checking  
all 100 of them

▪ Graceful degradation
▪ Gets better as group size increases

!59

Copyright © 2019 HashiCorp

▪ SWIM's simple, robust scalability

▪ RTT's for Network Distance for free

▪ Lifeguard's defense against SWIM's weak spot

Randomization: Two Three Ways We Win

!60

Copyright © 2019 HashiCorp

▪ Picked up literature search thanks to backlog

▪ No one had reported on this issue but...
▪ Gave us the metrics to use to investigate
▪ Showed us good benchmarking experiments

▪ Benchmarks have persistent value
▪ Regression testing, competitive analysis, ...
▪ Backbone of a paper

Research Also Helped With Lifeguard ... Eventually

!61

Copyright © 2019 HashiCorp

Lifeguard (arXiv and IEEE DSN 2018)

!62

Copyright © 2019 HashiCorp

Lifeguard (arXiv and IEEE DSN 2018)

!63

Developed iteratively over 18 months...

• Internal benchmarking report
• Internal white paper (engineering, sales, ...)
• arXiv.org 'pre-print'
• Published version
• Blog posts, Tweets, conference talks ...

Copyright © 2019 HashiCorp

Publication Has Embedded Us In the Graph

!64

Copyright © 2019 HashiCorp

▪ Better algorithms

▪ Relevant metrics

▪ Talent
▪ Interns and full-time

▪ Reputation
▪ Customers and potential customers
▪ Internal >> employee satisfaction

Benefits of Research (Tell Your Boss ...)

!65

Copyright © 2019 HashiCorp

▪ Papers We Love (PWL)
▪ Github repo + Meetups

▪ The Morning Paper by Adrian Colyer
▪ Blog + email

▪ At work
▪ Reading group
▪ Brownbag PWL
▪ Colleagues with research experience?

Where to Begin?

!66

Copyright © 2019 HashiCorp

▪ Ask questions
▪ Email, Twitter

▪ Attend conferences
▪ Discuss your open problems
▪ Blog
▪ Twitter

▪ PhD candidate interns

▪ Employees with research experience
▪ PhD, Masters or started graduate school?

Getting Involved in Research

!67

Copyright © 2019 HashiCorp

▪Mutual benefit
▪ Your (relevant) problem/data == goldmine for their work
▪Work done during internship is your Intellectual Property

▪ Approach students and advisors
▪ Poster sessions at conferences
▪ Email

PhD Candidate Interns

!68

Copyright © 2019 HashiCorp

Researchers are People Too!

!69

Thank you.

hello@hashicorp.comwww.hashicorp.com

Copyright © 2019 HashiCorp

▪ Pseudo-randomization
▪ Go math/rand
▪ Seeded from /dev/urandom 

▪ Each node cycles through all the nodes it knows about
▪ Only then talk to same node a second time

▪ New nodes inserted into its memberlist at random position

Controlled Use of Randomization

!71

Copyright © 2019 HashiCorp

Weak Consistency Is Sometimes Enough

!72

