
A Continuation of Devops
Policy as Code

March 2019

Gareth Rushgrove

@garethr
Docker

This talk

- A little history
Infrastructure, APIs and devops

- Parallels with security
Security as policy management

- Security tool examples
How can tools facilitate sharing and collaboration

What to expect

A little history

“The API is the product”
Todd Sampson, way back in 2008

Infrastructure as code
A banner for lots of tools and approaches

Just sysadmins solving problems

From adhoc to software
$ sudo apt-get install some-package
$ nano /etc/some-config-file.ini
...
$ nano /etc/some-other-config-file.xml
...
$ sudo service start some-service

class { 'apache':
 default_vhost => false,
}

apache::vhost { 'vhost.example.com':
 port => '80',
 docroot => '/var/www/vhost',
}

DSLs and the configuration clock

Enter Devops

- Culture
- Automation
- Measurements
- Sharing

Still the best distillation of devops

Co-evolution of tools and practice
Advancement in one begets the other in
sociotechnical systems

“Other people’s computers”
Towards well defined APIs

24x
faster recovery from failures

Why all the fuss?

3x
lower change failure rate

22%
less time spent on unplanned work and rework

50%
less time remediating security issues.

From State of Devops report 2017

What did we learn?

Not everyone needs to be an expert
Content reuse scales

The utility of a marketplace

Version control as change control

Shared tooling emerges
$ puppet-lint /etc/puppet/modules
foo/manifests/bar.pp - ERROR: trailing
whitespace found on line 1
apache/manifests/server.pp - WARNING: variable
not enclosed in {} on line 56
...

require 'chefspec'

describe 'file::delete' do
 let(:chef_run) { ChefSpec::SoloRunner.new(platform: 'ub

 it 'deletes a file' do
 expect(chef_run).to delete_file('/tmp/explicit_action
 expect(chef_run).to_not delete_file('/tmp/not_explici
 end
end

The importance of community

Parallels with security

Lots of spreadsheets
And lots of manual processes

Silos abound

“Low performers take weeks to
conduct security reviews and
complete the changes identified.”

From Accelerate State of Devops report

“Probably the security teams
would rather the policy docs not
be published? Or doesn’t make
sense to OSS it”
Vincent Janelle, @randomfrequency

“The only way to really ensure
software security is to put automated
security controls in the pipelines”

Juanjo Torres, BBVA
From DevSecOps Community Survey 2019

Security automation is not new
Neither was using code to manage servers, or
automated deployments or working across silos

“Elite performers build security in and
can conduct security reviews and
complete changes in days.”

From Accelerate State of Devops report

Security as policy management
Part of security is the definition and
implementation of controls

How do we get to policy as code?
By which we mean controls which are machine
readable and machine enforceable

Security tooling examples

ModSecurity: Web Application Firewall

Write application firewall rules in code
User login password
SecRule REQUEST_FILENAME "@endsWith /wp-login.php" \

"id:9002100,\
phase:2,\
pass,\
t:none,\
nolog,\

ctl:ruleRemoveTargetByTag=CRS;ARGS:pwd"

OWASP Core Rule Set

Some ecosystem tooling

- ✘ A somewhat terse DSL
- ✘ Terse may be an understatement
- ✔ Some shared content, but no community sharing
- ✘ Tied to Apache, and more recently Nginx
- ✘ Rule based vs heuristic based

Some observations about ModSecurity

But...

Inspec: compliance as code

Helpers for writing controls with rspec
control 'cis-ubuntu-lts-5.4.4' do
 impact 0.7
 title 'Ensure default user umask is 027 or more restrictive'
 desc 'The default umask determines the permissions of files created by users.'
 describe file('/etc/bash.bashrc') do
 its('content') { should match /^umask 027/ }
 end
 describe file('/etc/profile') do
 its('content') { should match /^umask 027/ }
 end
end

Extended for other types of policy
describe aws_eks_cluster('my-eks') do
 it { is_expected.to exist }
 expect(subject.status).to eq 'ACTIVE'
 expect(subject.subnet_counts).to be > 1
end

describe aws_s3_bucket('test_bucket') do
 it { is_expected.to exist }
 it { is_expected.not_to be_public }
end

A supermarket of shared profiles
$ inspec supermarket profiles

 ──────────────────────────── Available profiles: ────────────────────────────

 • Ansible Fashion Police brucellino/ansible-fashion-police
 • apache2-compliance-test-tthompson thompsontelmate/apache2-compliance-test-tthompson
 • Apache DISA STIG som3guy/apache-disa-stig
 • Black Panther brucellino/black-panther
 • chef-alfresco-inspec-mysql alfresco/chef-alfresco-inspec-mysql
 • chef-alfresco-inspec-tomcat alfresco/chef-alfresco-inspec-tomcat
 • chef-client-hardening sliim/chef-client-hardening
 • CIS Distribution Independent Linux Benchmark dev-sec/cis-linux-benchmark
 • CIS Docker Benchmark dev-sec/cis-docker-benchmark
 • CIS Kubernetes Benchmark dev-sec/cis-kubernetes-benchmark
 • CVE-2016-5195 ndobson/cve-2016-5195
 • DevSec Apache Baseline dev-sec/apache-baseline
 • DevSec Linux Baseline dev-sec/linux-baseline
 • DevSec Linux Patch Baseline dev-sec/linux-patch-baseline

A community building content

Easy to use without expertise
$ inspec supermarket exec dev-sec/linux-baseline

× Kernel Parameter kernel.core_pattern value should match /^\/.*/
 expected "|/usr/share/apport/apport %p %s %c %d %P" to match /^\/.*/
 Diff:
 @@ -1,2 +1,2 @@
 -/^\/.*/
 +"|/usr/share/apport/apport %p %s %c %d %P"

 ✔ sysctl-32: kernel.randomize_va_space
 ✔ Kernel Parameter kernel.randomize_va_space value should eq 2
 ✔ sysctl-33: CPU No execution Flag or Kernel ExecShield
 ✔ /proc/cpuinfo Flags should include NX

Profile Summary: 25 successful controls, 28 control failures, 1 control skipped
Test Summary: 67 successful, 42 failures, 2 skipped

- ✘ Ruby and programming language fashion
- ✔ High-quality shared content
- ✔ Chef supermarket as a central repository
- ✘ No tools for non-programmers

Some observations about Inspec

But...

Open Policy Agent

Open Policy Agent allows you to
express policies in a high-level
declarative language that promotes
safe, fine-grained logic.

Prohibit changes to AWS IAM rules
package terraform.analysis

import input as tfplan

default authz = false
authz {
 not touches_iam
}

touches_iam {
 all := instance_names["aws_iam"]
 count(all) > 0
}

list of all resources of a given type
instance_names[resource_type] = all {
 resource_types[resource_type]
 all := [name |
 tfplan[name] = _
 startswith(name, resource_type)
]
}

Block images from other registries
package admission

import data.k8s.matches

deny[{
"id": "container-image-whitelist", # identifies type of violation
"resource": {

 "kind": "pods", # identifies kind of resource
 "namespace": namespace, # identifies namespace of resource
 "name": name # identifies name of resource

},
"resolution": {"message": msg}, # provides human-readable message to display

}] {
matches[["pods", namespace, name, matched_pod]]
container = matched_pod.spec.containers[_]
not re_match("^registry.acmecorp.com/.+$", container.image)
msg := sprintf("invalid container registry image %q", [container.image])

}

Test Kubernetes Helm charts
deny[msg] {
 input.kind = "Deployment"
 not input.spec.template.spec.securityContext.runAsNonRoot = true
 msg = "Containers must not run as root"
}

$ helm opa CHART
Processing file deployment.yaml
Violations:
- Containers must not run as root
Processing file ingress.yaml
Processing file service.yaml
===
Result: Chart is not compliant

- New
- ✔ Built-in tools for testing
- ✔ Widely applicable to different problems
- ✘ Limited examples outside use with Kubernetes
- ✘ No built-in sharing or central repository (yet)

Some observations about Open Policy Agent

But...

Conclusions

Crossing the chasm

Puppet manifests 1.4million

Dockerfiles 1.16million

Compose files 229,000

Helm Charts 36,000

ModSecurity configs 3207

Inspec profiles 1736

.rego files 361

A way to go still

Policy as code is a powerful idea
But we’re not there yet in terms of tools and ecosystems

Build for community
Don’t just write code, think about enabling an ecosystem

For tool builders

Follow Adam and SFOSC

Build for sharing
Blog posts, examples, tools, talks, everything helps

For end users

Put this in your own context
Emphasise sharing, reuse and community when adopting
new tools and practices in your own organisation

Thanks
and any questions?

