
4th March 2019

The future of operating systems on
RISC-V

Alex Bradbury asb@lowrisc.org @asbradbury

mailto:asb@lowrisc.org

Structure of this talk

● Introduction to RISC-V
● RISC-V status
● Selected RISC-V topics
● RISC-V and open hardware: the future
● Conclusion

2

Introduction to RISC-V

● RISC-V: an open standard instruction set architecture (ISA)
○ But wait, what’s an ISA?
○ Ecosystem of both open and proprietary implementations

● Allows / encourages custom extension
● Open standards, open(ish) development process, and (often) open

implementations: a new model of development for the hardware industry?
● Managed by the RISC-V Foundation
● A “boring” design is a good thing in an ISA

3

Introduction to RISC-V: Details

● Key aim: flexibility. Scale up to HPC and down to deeply embedded
MMU-less devices.
○ If standard solutions don’t work, add your own extensions
○ Flexibility can be a disadvantages. Opportunities, but also challenges

● “Base” ISAs: RV32I, RV32E, RV64I, RV128I
● Standard extensions: MAFDC
● Instruction encoding: 16-bit, 32-bit, 48-bit, ...
● Privileged vs unprivileged ISA
● Beyond the ISA

4

Background: FPGAs, ASICs, semiconductor
economics
● FPGA: Field Programmable Gate

Array
○ Pictured: Nexys A7, ~$270,

Xilinx Artix-7 FPGA
○ Can run Rocket at 50MHz,

boot Linux etc
● ASIC vs FPGA vs simulation
● ASIC volumes. 10s (multi-project

wafer) or millions (volume run) are
“easy”. Middle ground isn’t really
viable

● Semiconductor licensing models 5

RISC-V status
● Specifications

○ User-level and privileged ISAs going through “ratification”
○ New extensions in development. Also debug, interrupt controller etc

● Compilers, libc, languages
○ gcc, LLVM/Clang, glibc, musl, Go, Rust

● Simulation platforms
○ Qemu, gem5, spike, tinyemu

● Hardware
○ SiFive “Freedom” boards, Kendryte, open-isa.org, FPGA-ready

distributions (e.g. lowrisc.org)
○ Open source implementations: Rocket, PULP, ... 6

RISC-V status

● OS
○ FreeRTOS, Zephyr, seL4, Tock
○ HarveyOS, HelenOS
○ Linux, FreeBSD

● Bootloader
○ Coreboot, u-boot, bbl, OpenSBI

● Linux distributions
○ Debian, Fedora, Alpine, ...

7

Aside: Why are RISC-V pages 4KB? Check
the spec

For many applications, the choice of page size has a substantial performance impact. A large page size
increases TLB reach and loosens the associativity constraints on virtually-indexed, physically-tagged
caches. At the same time, large pages exacerbate internal fragmentation, wasting physical memory and
possibly cache capacity.

After much deliberation, we have settled on a conventional page size of 4 KiB for both RV32 and RV64.
We expect this decision to ease the porting of low-level runtime software and device drivers. The TLB
reach problem is ameliorated by transparent superpage support in modern operating systems [2].
Additionally, multi-level TLB hierarchies are quite inexpensive relative to the multi-level cache hierarchies
whose address space they map.

RISC-V Privileged specification 1.10
8

RISC-V: Selected topics

9

SBI: Background

● Supervisor Binary Interface (SBI)
● Privilege levels

○ M: Machine
○ S: Supervisor
○ U: User

● SBI provides an interface between the OS and Supervisor Execution
Environment (SEE)

● M-mode has full system access, can be used to emulate missing
functionality

10

SBI

● Aim: Allow a single OS binary to run on all SEE implementations
● Current interface minimal (timer, inter-processor interrupts, remote fences,

console, shutdown). Proposals to extend: power management, even
context switch

● Controversy: puts large amount of trust in potentially opaque binary blobs.
See arguments from e.g. Ron Minnich (Coreboot)

11

Virtualisation

● See: “Proposal for virtualization without H mode” by Paolo Bonzini (KVM
maintainer).
○ Also “RISC-V Hypervisor Extension” slides (Dec 2017,

Bonzini+Hauser+Waterman)
● Rather than having H, M, S, U mode, add “virtualized supervisor” and

“virtualized user” modes. Introduces “background” CSRs.
● Great example of collaborative development, benefitting from expert input

12

RISC-V and open hardware: the
future

13

Ingredients for rapid hardware/software
innovation

● Ideas
● Open standards
● High quality, well tested + verified open implementations
● Active development community
● Mechanism for “capturing” contributions.

○ Process for reviewing and agreeing proposals / code contributions.
○ Then shipping in future spec or hardware

14

Malleable hardware

● Is this a “clean slate” opportunity?
● Same old challenges (security, energy efficiency, performance). Potential

for new solutions if changes are possible across ISA, microarchitecture,
OS, compiler, languages, …

● More viable for some market segments than others: normal market forces
still in play

15

● Plan changes
● Prototype in simulator, make necessary software changes
● Modify a hardware implementation and test with FPGA / Verilator
● Publish changes and write up
● Pathway to inclusion in shipping hardware is more difficult, though

multiple groups working on this
○ lowRISC is aiming for regular tapeouts so community members can

see their contributions realised
○ SiFive aiming to lower barrier for new silicon
○ Whole array of other startups and organisations

Idea -> prototype

16

● Direct segments: optimisation for page-based virtual memory. Avoid TLB
miss overhead by mapping part of a process’ virtual address space to
contiguous physical memory

● Proposed originally in 2013, but evaluated using a simple analysis based
on counting TLB misses

● Thanks to availability of easily modifiable hardware implementation, can
perform a better analysis

● Added 50 lines of Chisel code to Rocket and 400 lines to Linux kernel
● https://carrv.github.io/2018/papers/CARRV_2018_paper_4.pdf
● Novel HDLs: does it make it easier?

Example: direct segments (University of
Wisconsin)

17

● Tagged memory (see lowRISC tagged memory releases and HWASAN for
Arm)
○ See Katie Lim’s write-up on adding Linux kernel support

https://www.lowrisc.org/docs/tagged-memory-os-enablement-interns
hip-2017/

● Spectre mitigations: same story as any other ISA, but access to open
source superscalar processors like BOOM for research helps a lot

● Capabilities (see CHERI)
● ...

Novel security solutions

18

● Small micro-controller class cores scattered across the SoC
● Using same RISC-V ISA
● Open, not hidden (a la management engine)
● Potential use cases: soft / virtualized peripherals, security policies, near

data computation, debug trace processing, …
● Prototyped on lowRISC platform (using PULP core), previous GSoC student

ran TCP/IP stack using Rump kernels
● See also: custom accelerators

Minion cores

19

End goal: productive + public
feedback loop between
application engineers, compiler
authors, micro-architects, ISA
designers, ...

20

● Key challenges
○ Lowering the barrier to entry
○ Increasing the incentive for participation
○ Diversity and novel solutions are great. But how to maximise code

reuse and infrastructure sharing?
● Questions?
● Contact: asb@lowrisc.org
● Sound interesting? We are hiring! 7 open positions: www.lowrisc.org/jobs

Conclusion

21

mailto:asb@lowrisc.org

Overflow

22

New extensions: vector, bitmanip

23

Collaborative development:
observations

24

Compliance and testing

25

Open FPGA toolchains

26

Memory model

27

LLVM status, development
approach

28

