
JS � Character Encodings
Anna Henningsen · @addaleax · she/her

1

It’s good to be back! 😉

2

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

???

3

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

So … what’s a character encoding?
People are good with text, computers are good with numbers

Text List of characters

List of integersList of bytes

“Encoding”

4

So … what’s a character encoding?
People are good with text, computers are good with numbers

Hello [‘H’,’e’,’l’,’l’,’o’]

[72, 101, 108, 108, 111]68 65 6c 6c 6f

5

So … what’s a character encoding?
People are good with text, computers are good with numbers

你好! [‘你’,’好’]

??????

6

ASCII
0 0x00 <NUL>

… … …

65 0x41 A

66 0x42 B

67 0x43 C

… … …

97 0x61 a

98 0x62 b

… … …

127 0x7F
7

ASCII
● 7-bit
● Covers most English-language use cases
● … and that’s pretty much it

8

ISO-8859-*, Windows code pages
● Idea: Usually, transmission has 8 bit per byte available, so create

ASCII-extending charsets for more languages

ISO-8859-1 (Western)
(aka Latin-1)

ISO-8859-5 (Cyrillic) Windows-1251 (Cyrillic)

… … … …

0xD0 Ð а Р

0xD1 Ñ б С

0xD2 Ò в Т

… … … …

9

GBK
● Idea: Also extend ASCII, but use 2-byte for Chinese characters

… …

0x41 A

0x42 B

… …

0xC4 0xE3 你

0xC4 0xE4 匿

… …

10

https://xkcd.com/927/
11

https://xkcd.com/927/

Unicode: Multiple encodings!

“Müll”
U+004D M
U+00FC ü
U+006C l
U+006C l

4d c3 bc 6c 6c (UTF-8)

4d 00 fc 00 6c 00 6c 00 (UTF-16LE)

00 4d 00 fc 00 6c 00 6c (UTF-16BE)

12

● New idea: Don’t create a gazillion charsets, and drop 1-byte/2-byte restriction
● Shared character set for multiple encodings: U+XXXX with 4 hex digits, e.g.

U+0041 = A
● Character numbering backwards-compatible with ISO-8859-1
● Goes up to U+10FFFF > 1M characters
● … Emoji! 🎉 😍 😺
● Special replacement character: U+FFFD �
● Supported in HTML as &#x????; (hex) or &#????; (decimal)
● Supported in JS as \u???? or \u{?????}

Unicode

13

UTF-8
Variable-length encoding with single-byte code units:

 U+0000 - U+007F: 0xxxxxxx
 U+0080 - U+07FF: 110xxxxx 10xxxxxx
 U+0800 - U+FFFF: 1110xxxx 10xxxxxx 10xxxxxx
 U+10000 - U+1FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

● ASCII-compatible
● “Lead bytes” are >= 0xC0
● “Trailing bytes” are >= 0x80 and < 0xC0
● Missing/invalid bytes do not break decoding

14

UTF-8 broken decoding example

Müll 4d fc 6c 6c

M�ll

ISO-8859-1 encode

UTF-8 decode

15

UTF-16
● Uses 2-byte code units
● Characters > U+FFFF split into two units from 0xD800 to 0xDFFF

(“surrogate pairs”)
● Comes in Little Endian and Big Endian variants
● Maybe use special character U+FEFF (“BOM”) to distinguish LE/BE

🎉 (0xFEFF) 0xD83C 0xDF89
(FF FE) 3C D8 89 DF

(FE FF) D8 3C DF 89

16

“JavaScript uses UTF-16”
Well … yes and no:

● JavaScript does not perform any conversion of strings into bytes
● The underlying memory may or may not be formatted in UTF-16

○ (JS Engines are clever about this!)

● JavaScript does use character codes in the range 0 – 65535
● JavaScript strings do use surrogate pairs in the style of UTF-16

‘🎉’.length === 2
'🎉' === '\uD83C\uDF89’

17

Side note: What actually happens
● Both V8 and SpiderMonkey distinguish between Latin-1-only strings and

strings requiring full 2-byte code units
● String representations are complicated anyway
● Don’t overthink it

18

Node.js:

const buf = Buffer.from(‘Hi!’, ‘utf8’);
console.log(buf.toString(‘utf8’));

Browser (or Node.js 12+ or Node.js 10 with require(‘util’)):

const uint8arr = new TextEncoder().encode(‘Hi!’);
console.log(new TextDecoder(‘utf8’).decode(uint8arr);

⚠ TextDecoder supports a range of encodings, TextEncoder only UTF-8! ⚠

Converting back and forth in JS

19

Dealing with decoding errors
TextDecoder has a fatal option that makes it throw exceptions:

> new TextDecoder('utf-8').decode(new Uint8Array([0xff]))
'�'
> new TextDecoder('utf-8', {
 fatal: true
}).decode(new Uint8Array([0xff]))
TypeError [ERR_ENCODING_INVALID_ENCODED_DATA]: The encoded
data was not valid for encoding utf-8

Generally, it is okay to leave � when it happens.

20

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

???

21

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

What’s wrong with this? (Node.js variant)
const data = ‘’;
process.stdin.on(‘data’, (buffer) => {
 data += buffer;
});
process.stdin.on(‘end’, () => {
 process.stdout.write(data);
});

22

What’s wrong with this? (Node.js variant)
const data = ‘’;
process.stdin.on(‘data’, (buffer) => {
 data += buffer; // Implicit buffer.toString() call
});
process.stdin.on(‘end’, () => {
 process.stdout.write(data);
});

23

Imagine that this happens…

Input: Müll = 4d c3 bc 6c 6c

4d c3 | bc 6c 6c

toString()

M� | �ll

24

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

???

25

https://travis-ci.org/node-ffi-napi/get-symbol-from-current-process-h/jobs/641550176

Let’s fix it:
const data = ‘’;
process.stdin.setEncoding(‘utf8’);
process.stdin.on(‘data’, (string) => {
 data += string;
});
process.stdin.on(‘end’, () => {
 process.stdout.write(data);
});

26

Under the hood: Streaming decoders
const decoder = new StringDecoder(‘utf8’); // Node.js
const str1 = decoder.write(buffer1);
const str2 = decoder.write(buffer2);
const str3 = decoder.end();

const decoder = new TextDecoder(‘utf8’); // Browser + Node
const str1 = decoder.decode(buffer1, { stream: true });
const str2 = decoder.decode(buffer2, { stream: true });
const str3 = decoder.decode(new Uint8Array());

27

Let’s talk a bit more about surrogates in JS…
● ‘🤡’ === ‘\uD83E\uDD21’
● So, ‘🤡’.length === 2
● How do we get the number of characters? How do we figure out the actual

characters?

28

Option 1: Strings are iterables
const str = ‘Clown 🤡’;
console.log([...str]); // [‘C’,‘l’,‘o’,‘w’,‘n’,‘ ’,‘🤡’]

let len = 0;
for (const char of str) len++;
console.log(len);

29

Option 2: Manual work
const str = ‘🤡’;
console.log(str.charCodeAt(0)); // 0xD83E
console.log(str.charCodeAt(1)); // 0xDD21
console.log(str.codePointAt(0)); // 0x1F921
console.log(str.codePointAt(1)); // 0xDD21

// This also gives us the reverse transformation:

String.fromCharCode(0xD83E, 0xDD21) === ‘🤡’;
String.fromCodePoint(0x1F921) === ‘🤡’;

30

Regular expressions are fun
> /e{2,4}/.test(‘beehive’)
true
> /🐈{2,4}/.test(‘two cats: 🐈🐈’)
false

31

/🐈{2,4}/ expands to /\uD83D\uDC08{2,4}/ 😞

Luckily, there’s an easy solution:

> /🐈{2,4}/.test(‘two cats: 🐈🐈’)
false
> /🐈{2,4}/u.test(‘two cats: 🐈🐈’)
true

Regular expressions are fun

32

Not yet supported everywhere, but:

‘This is a cat: 🐈’.match(/\p{Emoji_Presentation}/gu)
> ['🐈']

Regular expressions are even more fun

33

> 'André' === 'André'
false
> '한글' === '한글'
false

Unicode is a bit too clever here…

Just because two strings look the same…

34

> [...'André'].map(c =>
c.codePointAt(0).toString(16).padStart(4, 0))

['0041', '006e', '0064', '0072', '0065', '0301']

> [...'André'].map(...)
['0041', '006e', '0064', '0072', '00e9']

> '한글'.length
6
> '한글'.length
2

Just because two strings look the same…

35

Four normalization modes that can be used with
String.prototype.normalize():

1. NFC: “Canonical” decomposition + “Canonical” composition,
e.g. ‘é’ or or ‘한’ are single characters

2. NFD: “Canonical” decomposition
e.g. ‘é’ is composed out of 2 characters (e + ´), ‘한’ out of three characters (ᄒ
+ ᅡ + ᆫ)

You may want to use this when comparing strings

Unicode normalization

36

Four normalization modes that can be used with
String.prototype.normalize():

1. NFKC: “Compatibility” decomposition + “Canonical” composition,
e.g. ‘𝐇𝐄𝐋𝐋𝐎’ turns into ‘HELLO’

2. NFKD: “Compatibility” decomposition
e.g. ‘𝐇𝐄𝐋𝐋𝐎’ turns into ‘HELLO’ (but ‘𝐚’̃ is turned into a + ̃)

You may want to use this for e.g. search parameters

Unicode normalization, cont’d

37

So … what does str.length actually tell us?
Not a lot:

● Not the number of characters – characters can be composed
● Not the number of Unicode code points – characters can be split into

UTF-16-style surrogate pairs
● Not the string “width” – remember, '한글'.length === 6
● Basically only half the byte length when encoded as UTF-16… 😕

38

How does this work?

Àpropos string width…

39

How does this work?

require(‘string-width’)(‘🎉’) === 2

Àpropos string width…

40

Side note: Node.js v13.x REPL bug up for grabs?
> '한글'.let ength
6

Our string width implementation doesn’t account for the way that the Hangul
characters are composed… do we need to call str.normalize(‘NFC’) first?
Does that always do the right thing? Why is this only problematic on v13.x?

41

So… about that binary Node.js encoding
● A long, long time ago … we didn’t have Uint8Array
● Binary data was still real, though
● The only good sequence type besides arrays were strings, so…

42

So… about that binary Node.js encoding
● A long, long time ago … we didn’t have Uint8Array
● Binary data was still real, though
● The only good sequence type besides arrays were strings, so…

Use U+0000 through U+00FF to represent bytes 0 through 255

43

So… about that binary Node.js encoding
● We have something better: Uint8Array/Buffer
● There’s actually a better name for the encoding: latin1!
● Most importantly: The name is really misleading – all character encodings

convert strings to bytes, 99 % of modern usage is based on misunderstanding
● This is (was) kind of the big issue with Python 2 vs Python 3

(One use case for “binary strings” that remains: atob() / btoa() in the browser)

44

Side note: Node.js character encodings
Node.js supports:

● ascii
● utf8
● utf16le (a.k.a. ucs2)
● latin1 (a.k.a. binary)
● base64 (this is a binary-to-text encoding, not a character encoding)
● hex (this is a binary-to-text encoding, not a character encoding)

45

base64 + hex
⚠ Warning:

● For character encodings, string → bytes is encoding and bytes → string is
decoding

● For text-to-binary encodings, string → bytes is decoding and bytes → string is
encoding

● So, depending on the parameters Buffer.from() can encode or decode,
and buffer.toString() can decode or encode

46

Everybody uses UTF-8 now anyway, right?
● Legacy code and legacy websites exist…
● People sometimes don’t notice that they don’t use UTF-8 (e.g. in the binary

case)
● We added Buffer support to the Node.js file system API because we had to
● The native Windows API is a big fan of UTF-16 😞
● Even when using UTF-8, things can still go wrong
● The speaker website couldn’t get this talk’s title right at first 😬
● Character encodings are part of your APIs!

47

Why is UTF-8 so popular anyway?
1. Backwards compatibility with ASCII
2. That’s it.

48

Why is UTF-8 so popular anyway?
1. Backwards compatibility with ASCII
2. That’s it.

Applications built for ASCII work with UTF-8 99 % of
the time. Allowing for the other 1 % won over having

to re-write tons of text handling code.

49

● iconv(1)
● unicode(1)
● MDN:

○ Binary strings - Web APIs | MDN
○ Intl - JavaScript | MDN
○ RegExp - JavaScript | MDN
○ Unicode property escapes - JavaScript | MDN
○ TextDecoder - Web APIs | MDN
○ TextEncoder - Web APIs | MDN

● https://nodejs.org/api/buffer.html … to some degree

Resources

50

https://developer.mozilla.org/en-US/docs/Web/API/DOMString/Binary
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions/Unicode_Property_Escapes
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder
https://nodejs.org/api/buffer.html

Thank you!

Slides will be published soon!
@addaleax

51

