
© 2019 Snowflake Computing Inc. All Rights Reserved

AUTOMATIC
CLUSTERING
PRASANNA RAJAPERUMAL I MARCH 2019

© 2018 Snowflake Computing Inc. All Rights Reserved

SNOWFLAKE

2

Our vision
Allow our customers to access all their

data in one place so they can make
actionable decisions anytime, anywhere,

with any number of users.

Our solution
Next-generation data warehouse
built from the ground up for the
cloud to address today’s data and
analytics challenges.

Delivered as
a service

Built for
the cloud

SQL Data
Warehouse

• Memory Management
• Degree of parallelism
• Failure recovery
• Scale Clusters
….
• Clustering

Automatic

ARCHITECTURE

Shared disk architecture

Data stored in S3

Metadata stored separately

Compute on-demand

TABLE DATA

Partitioned horizontally into files (!)
Columnar (Hybrid) storage (PAX)

Column values grouped
Compressed
Header contains index of column start

Name Age Country

Sam 30 USA

Trevor 35 Canada

Anna 38 England

Raj 40 India

Row Oriented StorageColumn Oriented StorageHybrid Columnar Storage

TABLE DATA

Immutable

File is a unit of

Update

Every change is
files deleted and files added

Concurrency

Sized to be few 10’s of MB at the most

10’s of millions of files

Sam 30 USA

Trevor 35 Canada

Sam 30 USA

Trevor 45 Canada

File 1:

Update table T set age = 45 where
name = “Trevor”

File 2:

METADATA
Stats on every column for every file

Zone maps (Netezza)
Min/Max, #distinct, #nulls etc

Improve Query performance
Pruning: Reduce scan

File1
Id: 3, 5, 9

date: 4/1, 4/2, 4/3

File2
Id: 6, 1, 10

date: 4/4, 4/3, 4/4

File3
Id: 7, 9, 10

date: 4/5, 4/5, 4/5

File4
Id: 1, 9, 10

date: 4/5, 4/6, 4/6

File
Name

Col Min Max

File1 Id
date

3
4/1

9
4/3

File2 Id
date

1
4/3

10
4/4

File3 Id
date

7
4/5

10
4/5

File4 Id
date

1
4/5

10
4/6

INDEX COMPARISON

Why not B-Trees?
Uni-dimensional
Index Maintenance
IO Cost on large queries

source

https://sqlity.net/en/2445/b-plus-tree/

© 2019 Snowflake Computing Inc. All Rights Reserved

DEFAULT CLUSTERING

8

Partitioned on ingestion
• Based on physical property: size
• Clustered based on load time
• Not optimized for other dimensions

01/01/2018

02/01/2018

03/01/2018

04/01/2018

05/01/2018

06/01/2018

07/01/2018

08/01/2018

09/01/2018

10/01/2018

11/01/2018

12/01/2018

Pruned
Partitions

Query:
Sept-Dec

Select … from orders where
date between
’09-01-2018’ and ’12-01-2018’

Select … from orders where
product = ‘IPhone’

© 2019 Snowflake Computing Inc. All Rights Reserved

PARTITIONING COMPARISON

9

Hash based

• Not efficient for range scans

Range based

• Strict boundaries
• Range Splitting when it gets too big

Snowflake

• Key not used for data distribution
• Overlaps in ranges are okay
• Achieve good pruning with zone maps (min/max)

Partition 1 Partition 2 Partition 3

Hash (key)

Partition 1 Partition 2 Partition 3

< Key <

0 - 25 26 - 50 51 - 75

Partition 1

Partition 2

Partition 3

< Column <

0 - 30

20 - 60

50 - 75

© 2019 Snowflake Computing Inc. All Rights Reserved

DEFAULT CLUSTERED TABLE

10

Micro-partition 1 Micro-partition 2 Micro-partition 3 Micro-partition 4

Name

Country

Rows 1-6 Rows 7-12 Rows 13-18 Rows 19-24

2

4

3

2

3

2

3

2

4

5

1

5

2

4

2

2

5

3

1

4

5

5

3

2

A

C

C

B

A

C

Z

B

C

X

A

A

X

Z

Y

B

X

A

C

Z

Y

B

X

Z

ID Name Country Date

UK

SP

DE

DE

FR

SP

DE

UK

NL

FR

NL

FR

FR

NL

SP

SP

DE

UK

FR

NL

SP

SP

DE

UK

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/3

11/3

11/3

11/2

11/2

11/2

11/3

11/3

11/4

11/3

11/4

11/4

11/5

11/5

11/5

Query Select count(*) from T where id = 2 and date = ’11/2’;

Natural ordering by date

11/2 11/2 11/2

11/2 11/2 11/2

11/2 11/2 11/2

11/3 11/3 11/3

11/2 11/2 11/2

11/3 11/3 11/4

11/3 11/4 11/4

11/5 11/5 11/5
Date

ID
2 4 3

2 4 3

3 2 4

5 1 5

2 4 2

2 5 3

1 4 5

5 3 2

Scans 3 partitions

© 2019 Snowflake Computing Inc. All Rights Reserved

EXPLICIT CLUSTERING

AUTOMATIC CLUSTERING

Automatically reorganizes table storage
from natural order to
Clustering keys order

Clustering Keys

Identify interesting
expressions
Should be order
preserving

© 2019 Snowflake Computing Inc. All Rights Reserved

PROBLEM DEFINTION

CONTINIOUS SORTING
AT PETABYTE SCALE

© 2019 Snowflake Computing Inc. All Rights Reserved

EXPLICITLY CLUSTERED TABLE

13

Micro-partition 1 Micro-partition 2 Micro-partition 3 Micro-partition 4

Name

Country

Rows 1-6 Rows 7-12 Rows 13-18 Rows 19-24

2

4

3

2

3

2

3

2

4

5

1

5

2

4

2

2

5

3

1

4

5

5

3

2

A

C

C

B

A

C

Z

B

C

X

A

A

X

Z

Y

B

X

A

C

Z

Y

B

X

Z

ID Name Country Date
UK

SP

DE

DE

FR

SP

DE

UK

NL

FR

NL

FR

FR

NL

SP

SP

DE

UK

FR

NL

SP

SP

DE

UK

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/2

11/3

11/3

11/3

11/2

11/2

11/2

11/3

11/3

11/4

11/3

11/4

11/4

11/5

11/5

11/5

11/2 11/2 11/2

11/2 11/2 11/2

11/2 11/2 11/2

11/2 11/2 11/2

11/3 11/3 11/3

11/3 11/3 11/3

11/4 11/4 11/4

11/5 11/5 11/5Date

ID
2 2 2
2 2 2

3 3 3
4 4 4

5 5 5
1 2 1

3 4 5
5 3 2

Clustering keys (date, id) Scans only 1 partition

Query Select count(*) from T where id = 2 and date = ’11/2’;

© 2019 Snowflake Computing Inc. All Rights Reserved

WHY EXPLICIT CLUSTERING?

GOOD
CLUSTERING

BETTER
PRUNING

QUERY
PERFORMANCE

JOIN
OPTIMIZATIONS

BETTER
REDUCTION

© 2019 Snowflake Computing Inc. All Rights Reserved

CHALLENGES: KEEPING UP WITH CHANGES

15

05/01/2018,
[0, 100]

New File

[0, 10)
[10, 20)

[20, 30)
[30, 40)

[40, 50)
[50, 60)

[60, 70)
[70, 80)

[80, 90)
[90, 100)

[0, 10)
[10, 20)

[20, 30)
[30, 40)

[40, 50)
[50, 60)

[60, 70)
[70, 80)

[80, 90)
[90, 100)

NEW DATA ADDED

PARTITION REWRITE

Original Immutable Files All Files Updated

© 2019 Snowflake Computing Inc. All Rights Reserved

APPROACHES TO KEEP UP

16

Batch re-clusterRe-cluster inline
with the changes

Extremely expensive
Block other changes
Huge variation in Query
performance
Not practical on PB tables

Full table re-write
High write amplification
Bound by re-cluster speed
Not practical for TB/PB
tables

© 2019 Snowflake Computing Inc. All Rights Reserved

REQUIREMENTS

17

Actual sort order is not a requirement
Goal – Good pruning with min/max
Overlap of value ranges are acceptable

Background Service
Find incremental work to improve query performance
Should not interfere with other changes
Can change clustering keys

© 2019 Snowflake Computing Inc. All Rights Reserved

PROBLEM DEFINTION

CONTINIOUS SORTING
AT PETABYTE SCALE

Approximate

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING METRICS - WIDTH

19

Clustering value range

Width of a partition
Width of the line connecting the
min and max value in the
clustering values domain range

1 100

Sam 18 USA

Trevor 78 Canada

Anna 30 England

Raj 35 India

File1 : Wide File

File2 : Narrow File

Clustering key = AGE

18 78

File1 Width = 60

File 2 Width = 5

30 35

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING METRICS - DEPTH

20

Clustering value range

Depth at a single value (or range)
Number of partitions overlapping at
a certain value in the clustering key
domain value range

1 100

Sam 18 USA

Trevor 78 Canada

Anna 30 England

Raj 35 India

File1

File2

Clustering key = AGE

18 78

30 35

Query: 32

Depth: 3

27 100

Query: 70

Depth: 2

Query: 20

Depth: 1

© 2019 Snowflake Computing Inc. All Rights Reserved

GOAL

Reduce Worst Clustering Depth
below an

acceptable threshold
to get

Predictable Query Performance

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING SCENARIO

A B C D E F G H I J K L

Clustering Value Range

A B B C D

D E F G H

I J J K L

A C E H K

depth=2 depth=2

width=11
Start State

width=4

width=5

width=4

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING SCENARIO

A B C D E F G H I J K L

A B B C D

D E F G H

I J J K L

A C E H K

depth=3 depth=4

width=11
Iteration 1: Pick 3 files to recluster

width=4

width=5

width=4

C F B E H

E I D L K

width=8

width=9

Clustering Value Range

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING SCENARIO

A B C D E F G H I J K L

A B B C D

D E F G H

I J J K L

depth=2 depth=2

Improved Clustering state
Iteration 2:

width=4

width=5

width=4

E E E F H

H H I K L

A B C C D width=4

width=4

width=5

Clustering Value Range

© 2019 Snowflake Computing Inc. All Rights Reserved

INSIGHT

Reduce Worst Depth by
Reducing overlapping

(reduce width)

© 2019 Snowflake Computing Inc. All Rights Reserved 28

FILE SELECTION: INTUITION

Clustering Value Range

C
lu

st
er

in
g

D
ep

th

© 2019 Snowflake Computing Inc. All Rights Reserved

FILE SELECTION: INTUITION

29

Peak1

Clustering Value Range

C
lu

st
er

in
g

D
ep

th

Target Depth

Peak2

© 2019 Snowflake Computing Inc. All Rights Reserved

AFTER RECLUSTERING

30

Partitions selected
for clustering

Clustering Value Range

C
lu

st
er

in
g

D
ep

th

© 2019 Snowflake Computing Inc. All Rights Reserved

ALGORITHM OUTLINE

31

Re-cluster
Execution

Optimistic
Commit

Partition
Batches

CHANGES

Partition
Selection

Stop

Keep re-clustering
until table is well
clustered enough

New Changes triggers
partition selection

Decouple Partition
Selection from

Execution

Divide work into
batches

© 2019 Snowflake Computing Inc. All Rights Reserved

FILE SELECTION ALGORITHM INTERNALS

Intuition: Work on the peaks

• Sort the micro-partition endpoints

• First pass: Compute peak ranges and calculate the

number of overlapping micro-partitions

• Stabbing count array

• Second pass: For the peak ranges – compute list of

partitions ordered by depth

• MinMaxPriorityQueue

© 2019 Snowflake Computing Inc. All Rights Reserved

CLUSTERING LEVELS

33

Clustering Key Domain

LEVEL N…

Reduces clustering width with levels

More partitions with shorter range of data

LEVEL 2:

LEVEL 3:

LEVEL 0:

LEVEL 1:

© 2019 Snowflake Computing Inc. All Rights Reserved

REVIEW
Wake up when data arrives

Split the table files into levels (clustering state)

Run clustering partition selection algorithm on each level

Queue up “recluster task” for execution

Scale up and execute re-cluster tasks

• Sized just right – optimized not to spill

• Non-blocking – optimistic commit

If clustering depth is not “good enough” repeat

Else sleep

© 2019 Snowflake Computing Inc. All Rights Reserved

EFFECT ON QUERY PERFORMANCE

35

Time

Average Query Response time

Background Recluster tasks

Files Added

T0 T1 T2 T3 T4 T5

© 2019 Snowflake Computing Inc. All Rights Reserved

FUTURE WORK

36

Multi Dimension Keys
• “Fake wide partition” problem
• High cardinality column renders

subsequent columns useless
• Avoid excessive churn

Manual cluster keys

Partition selection based on
usage

Other linearization functions
• Z-order, Grey-order,

Hilbert curves

Analyze workload to pick
best clustering keys
automatically
Partition selection Phase 2

© 2019 Snowflake Computing Inc. All Rights Reserved

JOIN US!

One of the “Best Places to Work” every year

Where else can you compete with Amazon, Google and Microsoft? ☺

Ambitious Projects Smart People Immediate Impact Fun Culture

THANK YOU

© 2018 Snowflake Computing Inc. All Rights Reserved

© 2019 Snowflake Computing Inc. All Rights Reserved

Jiaqi Yan

© 2019 Snowflake Computing Inc. All Rights Reserved

“FAKE WIDE PARTITIONS”

40

A B C D

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Actual Min/Max Column Metadata
Min/Max

A-1 A-3 A-A 1-3

A-5 B-1 A-B 1-5

B-2 B-4 B-B 2-4

B-4 C-2 B-C 2-4

C-3 C-4 C-C 3-4

C-5 D-2 C-D 2-5

© 2019 Snowflake Computing Inc. All Rights Reserved

CASE STUDY

41

> 1PB table, trickle load every 3 minutes

Provides dashboard service to customers

Sub-second query time SLA

Query by application IDs

Huge skews cross applications

Cluster by (app_id, time, name)

© 2019 Snowflake Computing Inc. All Rights Reserved

DASHBOARD

42

