
KILLER features of the 
BEAM

And what makes the BEAM a unique and powerful tool that  
really stands out!



Actor Model
Hundreds, Thousands, Millions of processes… 

    System limit can be between1,024-134,217,727

They share NOTHING

Communicate through message passing



Demo 1 
A hypothetical server



accept(NumRequests)-> 
  [dispatch(Req, self()) || Req <- lists:seq(1, NumRequests)], 
  collect_responses(0, 0, 0, 0, NumRequests). 

accept_loop() -> 
  receive           %% to get a message in my mailbox 
    Req -> dispatch(Req, self()) %% self() = my process id 
  end, 
  accept_loop().

JUGGLER  
a simplified DEMO SERVER  
https://github.com/iguberman/erljuggler_demo

lists:seq(1, NumRequests)dispatch(Req, self())

dispatch(Req, AcceptorPid) -> 
  spawn( 

?MODULE,                  %% Module 
kick_off_request_handler, %% Function 

  [Req, AcceptorPid]).      %% Arguments 
kick_off_request_handler

https://github.com/iguberman/erljuggler_demo


%%% a kind of a supervisor 
kick_off_request_handler(Req, AcceptorPid) -> 
  RequestHandlerPid =  

spawn(?MODULE, handle_request, [Req, self()]), 
   
  
    

kick_off_request_handler

{RequestHandlerPid, Resp} -> 
      

Unexpected ->  
AcceptorPid ! {error, Unexpected} 

Start = os:system_time(millisecond),
receive

  end.

handle_request

End = os:system_time(millisecond), 
Duration = End - Start, 
io:format("...~p [~b]...", [Req, Duration]), 
AcceptorPid ! {RequestHandlerPid, Resp, Duration};

JUGGLER  
a simplified DEMO SERVER  
https://github.com/iguberman/erljuggler_demo

https://github.com/iguberman/erljuggler_demo


handle_request

JUGGLER  
a simplified DEMO SERVER  
https://github.com/iguberman/erljuggler_demo

handle_request(Req, ParentPid) when is_integer(Req) -> 
  Resp = count_to_1000_and_do_other_stuff_too(Req, 0), 
  HandlerPid = self(), 
  ParentPid ! {HandlerPid, Resp} 
end. 

count_to_1000_and_do_other_stuff_too(_Req, 1000) -> ok; 
count_to_1000_and_do_other_stuff_too(Req, C) -> 
  case (Req rem 2) of 
    0 ->  binary:copy(<<Req/integer>>,300); 
    1 ->  binary:copy(<<(Req + 1)/integer>>,200) 
  end, 
  count_to_1000_and_do_other_stuff_too(Req, C+1). 

https://github.com/iguberman/erljuggler_demo


Demo 2 
server with a bug



JUGGLER  
a simplified DEMO SERVER  
https://github.com/iguberman/erljuggler_demo

handle_request(Req, ParentPid) when is_integer(Req) -> 

       
  Resp = count_to_1000_and_do_other_stuff_too(Req, 0), 

      HandlerPid = self(), 
      ParentPid ! {HandlerPid, Resp} 
end. 

end.

case Req rem 100 of 
  0 -> 
      io:format("~n**** ~p [INF]*****~n", [Req]), 
      ParentPid ! dont_wait_for_me, 
      handle_with_inf_loop_bug(); 
  _Other ->

handle_with_inf_loop_bug()-> 
    infinite_loop(0). 

infinite_loop(C) ->  
_A = binary:copy(<<1>>,200),  
_B = math:sqrt(1235),  
infinite_loop(C+1). 

https://github.com/iguberman/erljuggler_demo


BEAM Scheduler

Preemptive?

Cooperative?
Cooperative at C level

Preemptive at Erlang level 
(by means of reduction counting)
2000 reductions 
Reduction ~= function call

Word of caution: BIFs and NIFs



Free

BEAM Memory model
Process

PCB Stack

HeapMBox

GC

hipe_bifs:show_heap(Pid).

hipe_bifs:show_pcb(Pid).   %% Look at heap_sz !

hipe_bifs:show_estack(Pid).

Old Heap





JVM  
(simplified! SORRY! )

Heap 
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Stop the world.  
Is that a thing in Erlang?

GC



DEMO 3 
The KILLER



%%% a kind of a supervisor 
kick_off_request_handler(Req, AcceptorPid) -> 
  RequestHandlerPid =  

spawn(?MODULE, handle_request, [Req, self()]), 
   
  
    {RequestHandlerPid, Resp} -> 

      

Start = os:system_time(millisecond),
receive

  end.

End = os:system_time(millisecond), 
Duration = End - Start, 
io:format("...~p [~b]...", [Req, Duration]), 
AcceptorPid ! {RequestHandlerPid, Resp, Duration};

KILLER_JUGGLER  
a simplified DEMO SERVER  
https://github.com/iguberman/erljuggler_demo

after 5000 -> 
  exit(HandlerPid, timedout),

AcceptorPid ! {HandlerPid, killed}

Other -> AcceptorPid ! {error, Other}

https://github.com/iguberman/erljuggler_demo


STACK  
BASED
More Instructions

REGISTER 
BASED

Instructions are simple
Fewer instructions
Instructions have more info

1.POP 20 
2.POP 7 
3.ADD 20, 7, result 
4.PUSH result

1. ADD R1, R2, R3 ;        
 # Add contents of R1 and R2, store result in R3



Performance Survey on 
Stack-based and Register-

based VirtualMachines
Ruijie Fang, Siqi Liu, 2016

VM feature comparisons: 

Scientific comparison of REGISTER (Erlang) vs. STACK (JVM) VM 

Inertia spends 66.42% less time in instruction dispatch than Conceptum, on average

However, Inertia is still slower
in the overall fetch time, spending 23.5% more time on average in fetching operands than Conceptum does

Based on our test results, stack-based virtual machines
typically perform better on benchmarks featuring a high amount of arithmetic operations. 

In contrast to the stack-based virtual machine’s
performance, the register-based virtual machine performed much better on recursions and memory operations.

CONCEPTUM  
(stack-based like JVM)

INERTIA
(register-based like BEAM)



MBox

PCB Stack

Heap

M-buf

Free

M-buf M-buf M-buf

MBox Intern

MBox Inbox
Old Heap



DEMO 4 
Bring it down by sending messages to the 

process affected by inf loop!



TYPE SYSTEM  
Strong typed.   
So every type has a tag.  

Dynamically typed. 
Hot code loading anyone? 



TAGGING
In the memory representation of an Erlang term a few bits are 
reserved for a type tag.

LEVEL 1 tags:
  00 Header (on heap) CP (on stack) 
  01 List (cons) 
  10 Boxed 
  11 Immediate

LEVEL 2 tags (Immediate):
00 11 Pid 

   01 11 Port 
  10 11 Immediate 2 
  11 11 Small integer

<- pointers to the heap
<- fit into one word on the stack

LEVEL 3 tags (Immediate 2):
00 10 11 Atom 

   01 10 11 Catch
   10 10 11 [UNUSED] 
   11 10 11 Nil <- for empty list []



Q. How is cooperative scheduling implemented?

A. If there are untagged  values —  
no preempting 



https://happi.github.io/theBeamBook 

https://www.researchgate.net/publication/
309631798_A_Performance_Survey_on_Stack-
based_and_Register-based_Virtual_Machines (pdf available) 

https://llvm.org/devmtg/2014-04/PDFs/Talks/drejhammar.pdf
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