
KILLER features of the
BEAM

And what makes the BEAM a unique and powerful tool that
really stands out!

Actor Model
Hundreds, Thousands, Millions of processes…

 System limit can be between1,024-134,217,727

They share NOTHING

Communicate through message passing

Demo 1
A hypothetical server

accept(NumRequests)->
 [dispatch(Req, self()) || Req <- lists:seq(1, NumRequests)],
 collect_responses(0, 0, 0, 0, NumRequests).

accept_loop() ->
 receive %% to get a message in my mailbox
 Req -> dispatch(Req, self()) %% self() = my process id
 end,
 accept_loop().

JUGGLER
a simplified DEMO SERVER
https://github.com/iguberman/erljuggler_demo

lists:seq(1, NumRequests)dispatch(Req, self())

dispatch(Req, AcceptorPid) ->
 spawn(

?MODULE, %% Module
kick_off_request_handler, %% Function

 [Req, AcceptorPid]). %% Arguments
kick_off_request_handler

https://github.com/iguberman/erljuggler_demo

%%% a kind of a supervisor
kick_off_request_handler(Req, AcceptorPid) ->
 RequestHandlerPid =

spawn(?MODULE, handle_request, [Req, self()]),

kick_off_request_handler

{RequestHandlerPid, Resp} ->

Unexpected ->
AcceptorPid ! {error, Unexpected}

Start = os:system_time(millisecond),
receive

 end.

handle_request

End = os:system_time(millisecond),
Duration = End - Start,
io:format("...~p [~b]...", [Req, Duration]),
AcceptorPid ! {RequestHandlerPid, Resp, Duration};

JUGGLER
a simplified DEMO SERVER
https://github.com/iguberman/erljuggler_demo

https://github.com/iguberman/erljuggler_demo

handle_request

JUGGLER
a simplified DEMO SERVER
https://github.com/iguberman/erljuggler_demo

handle_request(Req, ParentPid) when is_integer(Req) ->
 Resp = count_to_1000_and_do_other_stuff_too(Req, 0),
 HandlerPid = self(),
 ParentPid ! {HandlerPid, Resp}
end.

count_to_1000_and_do_other_stuff_too(_Req, 1000) -> ok;
count_to_1000_and_do_other_stuff_too(Req, C) ->
 case (Req rem 2) of
 0 -> binary:copy(<<Req/integer>>,300);
 1 -> binary:copy(<<(Req + 1)/integer>>,200)
 end,
 count_to_1000_and_do_other_stuff_too(Req, C+1).

https://github.com/iguberman/erljuggler_demo

Demo 2
server with a bug

JUGGLER
a simplified DEMO SERVER
https://github.com/iguberman/erljuggler_demo

handle_request(Req, ParentPid) when is_integer(Req) ->

 Resp = count_to_1000_and_do_other_stuff_too(Req, 0),

 HandlerPid = self(),
 ParentPid ! {HandlerPid, Resp}
end.

end.

case Req rem 100 of
 0 ->
 io:format("~n**** ~p [INF]*****~n", [Req]),
 ParentPid ! dont_wait_for_me,
 handle_with_inf_loop_bug();
 _Other ->

handle_with_inf_loop_bug()->
 infinite_loop(0).

infinite_loop(C) ->
_A = binary:copy(<<1>>,200),
_B = math:sqrt(1235),
infinite_loop(C+1).

https://github.com/iguberman/erljuggler_demo

BEAM Scheduler

Preemptive?

Cooperative?
Cooperative at C level

Preemptive at Erlang level
(by means of reduction counting)
2000 reductions
Reduction ~= function call

Word of caution: BIFs and NIFs

Free

BEAM Memory model
Process

PCB Stack

HeapMBox

GC

hipe_bifs:show_heap(Pid).

hipe_bifs:show_pcb(Pid). %% Look at heap_sz !

hipe_bifs:show_estack(Pid).

Old Heap

JVM
(simplified! SORRY!)

Heap

Thread
Thread

ThreadThreadThread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread

Thread
Thread

Thread
Thread

Thread

Thread
Thread
Thread
Thread
Thread

Stop the world.
Is that a thing in Erlang?

GC

DEMO 3
The KILLER

%%% a kind of a supervisor
kick_off_request_handler(Req, AcceptorPid) ->
 RequestHandlerPid =

spawn(?MODULE, handle_request, [Req, self()]),

 {RequestHandlerPid, Resp} ->

Start = os:system_time(millisecond),
receive

 end.

End = os:system_time(millisecond),
Duration = End - Start,
io:format("...~p [~b]...", [Req, Duration]),
AcceptorPid ! {RequestHandlerPid, Resp, Duration};

KILLER_JUGGLER
a simplified DEMO SERVER
https://github.com/iguberman/erljuggler_demo

after 5000 ->
 exit(HandlerPid, timedout),

AcceptorPid ! {HandlerPid, killed}

Other -> AcceptorPid ! {error, Other}

https://github.com/iguberman/erljuggler_demo

STACK
BASED
More Instructions

REGISTER
BASED

Instructions are simple
Fewer instructions
Instructions have more info

1.POP 20
2.POP 7
3.ADD 20, 7, result
4.PUSH result

1. ADD R1, R2, R3 ;
 # Add contents of R1 and R2, store result in R3

Performance Survey on
Stack-based and Register-

based VirtualMachines
Ruijie Fang, Siqi Liu, 2016

VM feature comparisons:

Scientific comparison of REGISTER (Erlang) vs. STACK (JVM) VM

Inertia spends 66.42% less time in instruction dispatch than Conceptum, on average

However, Inertia is still slower
in the overall fetch time, spending 23.5% more time on average in fetching operands than Conceptum does

Based on our test results, stack-based virtual machines
typically perform better on benchmarks featuring a high amount of arithmetic operations.

In contrast to the stack-based virtual machine’s
performance, the register-based virtual machine performed much better on recursions and memory operations.

CONCEPTUM
(stack-based like JVM)

INERTIA
(register-based like BEAM)

MBox

PCB Stack

Heap

M-buf

Free

M-buf M-buf M-buf

MBox Intern

MBox Inbox
Old Heap

DEMO 4
Bring it down by sending messages to the

process affected by inf loop!

TYPE SYSTEM
Strong typed.
So every type has a tag.

Dynamically typed.
Hot code loading anyone?

TAGGING
In the memory representation of an Erlang term a few bits are
reserved for a type tag.

LEVEL 1 tags:
 00 Header (on heap) CP (on stack)
 01 List (cons)
 10 Boxed
 11 Immediate

LEVEL 2 tags (Immediate):
00 11 Pid

 01 11 Port
 10 11 Immediate 2
 11 11 Small integer

<- pointers to the heap
<- fit into one word on the stack

LEVEL 3 tags (Immediate 2):
00 10 11 Atom

 01 10 11 Catch
 10 10 11 [UNUSED]
 11 10 11 Nil <- for empty list []

Q. How is cooperative scheduling implemented?

A. If there are untagged values —
no preempting

https://happi.github.io/theBeamBook

https://www.researchgate.net/publication/
309631798_A_Performance_Survey_on_Stack-
based_and_Register-based_Virtual_Machines (pdf available)

https://llvm.org/devmtg/2014-04/PDFs/Talks/drejhammar.pdf

REFERENCES

https://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-
based-virtual-machine-architecture-and-the-dalvik-vm/

https://happi.github.io/theBeamBook
https://www.researchgate.net/publication/309631798_A_Performance_Survey_on_Stack-based_and_Register-based_Virtual_Machines
https://llvm.org/devmtg/2014-04/PDFs/Talks/drejhammar.pdf

