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Marc Andreessen: 
Software is Eating the World



Strong Form
Companies are
BECOMING SOFTWARE

Weak Form
Companies are 
USING MORE SOFTWARE
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Using Software: 
Classic Three-Tier Architecture

USER UI SERVICE DATABASE



Becoming Software: 
Services Talking To Each Other With APIs 

SERVICESERVICESERVICE SERVICE
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Increasing Complexity
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Kafka

Evolution of software systems
Monolith Distributed Monolith Microservices

Event-Driven 
Microservices

User Centric
Softw

are Centric

Service Service Service Service Service

Service Service Service

UI UI UI UI



IS MORE 
SOFTWARE

THE USER OF 
THE SOFTWARE



What does this mean for databases?
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We have hundreds 
of databases...



We have hundreds 
of databases...

FUNDAMENTAL ASSUMPTION:

DATA IS PASSIVE



Databases are designed to help you!



Unless there is a user and UI waiting,
why should it be synchronous?



The Alternative: Event Streams



Stream Processors are built for Asynchronicity



TRADITIONAL 
DATABASE

SELECT * 
FROM 

DB_TABLE

Active Query Passive Data

DB Table

EVENT STREAM 
PROCESSING

CREATE TABLE AS
SELECT * FROM 
EVENT_STREAM

Active Data Passive Query

Event Stream

Stream Processors have a different interaction model



Streams or Tables?



An Event
records the fact that something happened

21

A good
was sold

An invoice
was issued

A payment
was made

A new customer
registered



Events are state changes, they carry intent

State:

Bob works at 
Google

Event:

Bob moved
from Google 
to Amazon
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Where you have been vs. Where you are now

Payments you made vs. Your account balance

Streams
record exactly what 
happened

Tables
current state
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1. e4 e5
2. Nf3 Nc6
3. Bc4 Bc5
4. d3 Nf6
5. Nbd2

Streams
A sequence of moves

Tables
Position of each piece



Streams = INSERT only
Immutable, append-only

Tables = INSERT, UPDATE, DELETE
Mutable, Primary Key

25



A stream can be considered as an 
immutable, append-only table



Stream Processors Communicate Through Streams

INPUT STREAMS OUTPUT STREAMS

SP



But internally they use tables

Payments Stream

Credit Score Stream

CREATE TABLE credit_scores AS
SELECT user, updateScore(p.amount)…

Credit Score Table

20
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projection
(Group By Key, SUM, COUNT)

table changes

*See Streams and Tables: Two Sides of the Same Coin, M. Sax et al., BIRTE ’18

Streams
record history

Tables
represent state

Duality

https://dl.acm.org/citation.cfm?id=3242155


Similar to a materialized view in a database
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Payments 
Table

Credit Score 
Table

Payments 
Stream

Credit Score 
Stream

Credit Score 
Table

APP - Asynchronous
- Push query

STREAM 
PROCESSOR

ACTIVE 
DATABASE

- Synchronous
- Pull  query
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Joins



Customers

Orders

Lookup   Customer

Table of Customers 
(with Primary Key)

Joining a stream with a table
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Joining two streams

orders.join(payments)

Bob’s 
Order

Bob’s 
Payment

Jill’s 
Payment

Jill’s 
Order

Orders

Payments
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orders.join(payments)
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Joining two streams
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orders.join(payments)
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Key-value store 
Bob’s 
Order

Bob’s 
Payment

Jill’s 
Payment

Jill’s 
Order

Joining two streams
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Bob’s 
Order
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Jill’s 
Payment

Jill’s 
Order

Bob’s 
Payment

Bob’s 
Order

Joining two streams



Streams represent history –> Cartesian Product 
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Payments 
Stream

Orders 
Stream

Join Output
(Stream)

200 Hat2

101 Boots2

105 Pants

101 Boots

200 Hat

101 $60

105 $3

200 $12

101 $50

200 $10



Joining Streams to Streams
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Payments 
Stream

Orders 
Stream

Join Output
(Stream)

200 Hat2

101 Boots2

105 Pants

101 Boots

200 Hat

101 $60

105 $3

200 $12

101 $50

200 $10

Use time 
window



Tools for correlating recent 
events in time



More advanced temporal functions
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Page VisitsOrders

Join Output
(Stream)

Session



Late and out-of-order data
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Page VisitsOrders

Join Output
(Stream)

Window 1

Window 2



Stream processors provide tools 
that handle asynchronicity,

leverage time and focus on ‘now’
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Data Placement



Layered storage model
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...

...

...

Storage
(Kafka)

Stream 
Processor

read via
network

...

...

...

from stream’s P2 

from table’s P2 

‘Caching’ in 
streaming layer 



Partitioned Data (Fact-Fact joins)
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...

...

...

...

P1

P2

P3

P4

SP 1

SP 2

SP 3

SP 4

Partitioned 
KTable / TABLE

2 GB

3 GB

5 GB

2 GB

Storage (Kafka)



Broadcast Data (Fact-Dimension Joins)
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...

...

...

...

P1

P2

P3

P4

Stream Task 1

Stream Task 2

Stream Task 3

Stream Task 4

GlobalKTable

2 + 3 + 5 + 2 = 12 GB

12 GB

12 GB

12 GB



Architecturally there are parallels e.g. Data Warehousing

ETL

FACTS DIMS

REPORTING
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Interaction Model



Stream Processors Continuously Process Input to Output

INPUT STREAMS OUTPUT STREAMS

SP



TRADITIONAL 
DATABASE

SELECT * 
FROM 

DB_TABLE

Active Query Passive Data

DB Table

EVENT STREAM 
PROCESSING

CREATE TABLE AS
SELECT * FROM 
EVENT_STREAM

Active Data Passive Query

Event Stream



Databases are 
Pull Queries

What is Ben’s
credit score now?

695
APP

Stream Processors are 
Push Queries

APP

Ben’s credit score is 670

Ben’s credit score is 710

Ben’s credit score is 695

...

PaymentsPayments



Hybrid stream processors provide both interaction models

ksqlDB

Payments
Stream

APP

Query
Credit Scores

Stream
Credit Scores

Summarize & Materialize
Credit Scores

APP



Unified Model For:

1. The Asynchronous and the Synchronous
2. Interaction with Active or Passive Data



Unified interaction model

Now

Earliest to now

The FutureThe Past

Standard 
Database 

Query



Unified interaction model

Now
The Future

Now to forever

The Past

Standard Stream 
Processing Query



Unified interaction model

Now
The Future

Earliest to forever

The Past

‘Dashboard query’



Unified Interaction Model

Now

Earliest to now

The Future

Earliest to forever
Now to forever

The Past



PUSH PULL

SELECT user, credit_score
FROM orders
WHERE ROWKEY = ‘bob’
EMIT CHANGES;

SELECT user, credit_score
FROM orders
WHERE ROWKEY = ‘bob’;



Asynchronous => Pipelines

Transactions

Joins/aggregation/time-handling

APP

SQL SQL

SQL

APP



Other important variants

● Stream processors are often programming frameworks today
○ Storm
○ Flink
○ Kafka Streams 

● Today we have active databases that include change streams:
○ Mongo
○ Couchbase
○ RethinkDB



As Software Eats the World



IS MORE 
SOFTWARE

THE USER OF 
THE SOFTWARE



We need
Asynchronous + Synchronous 

Active + Passive



We still need 
all of these



So is the traditional perception of “a database” enough?
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