
Databases and Stream
Processing:

A Future of Consolidation

Ben Stopford Office of the CTO, Confluent

Marc Andreessen:
Software is Eating the World

Strong Form
Companies are
BECOMING SOFTWARE

Weak Form
Companies are
USING MORE SOFTWARE

Loan Application Using Software

BORROWER

1

CREDIT
OFFICER

3

LOAN
OFFICER

5

RISK
OFFICER

4

APPROVE

DENY

6

APPLICATION
FORM

2

Loan Application in Software

BORROWER

1

APPROVE

DENY

3

LOAN APP UI
CREDIT

SERVICE
RISK

SERVICE
CRM

SERVICE

2

Using Software:
Classic Three-Tier Architecture

USER UI SERVICE DATABASE

Becoming Software:
Services Talking To Each Other With APIs

SERVICESERVICESERVICE SERVICE

GEOSPATIAL
MATCHING

ROUTE
RE-PLANNING

BUSINESS
EVENTS

BUSINESS
EVENTS

DRIVERCUSTOMER

REQUESTING
A RIDE

9

Increasing Complexity

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

App Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

AppApps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

App Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

App Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Service Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Apps

Search

NoSQL

Monitoring

Security

Apps Apps

DWH
Hadoop

S T R E A M I N G P L A T F O R M

Kafka

Evolution of software systems
Monolith Distributed Monolith Microservices

Event-Driven
Microservices

User Centric
Softw

are Centric

Service Service Service Service Service

Service Service Service

UI UI UI UI

IS MORE
SOFTWARE

THE USER OF
THE SOFTWARE

What does this mean for databases?

10

We have hundreds
of databases...

We have hundreds
of databases...

FUNDAMENTAL ASSUMPTION:

DATA IS PASSIVE

Databases are designed to help you!

Unless there is a user and UI waiting,
why should it be synchronous?

The Alternative: Event Streams

Stream Processors are built for Asynchronicity

TRADITIONAL
DATABASE

SELECT *
FROM

DB_TABLE

Active Query Passive Data

DB Table

EVENT STREAM
PROCESSING

CREATE TABLE AS
SELECT * FROM
EVENT_STREAM

Active Data Passive Query

Event Stream

Stream Processors have a different interaction model

Streams or Tables?

An Event
records the fact that something happened

21

A good
was sold

An invoice
was issued

A payment
was made

A new customer
registered

Events are state changes, they carry intent

State:

Bob works at
Google

Event:

Bob moved
from Google
to Amazon

23

Where you have been vs. Where you are now

Payments you made vs. Your account balance

Streams
record exactly what
happened

Tables
current state

24

1. e4 e5
2. Nf3 Nc6
3. Bc4 Bc5
4. d3 Nf6
5. Nbd2

Streams
A sequence of moves

Tables
Position of each piece

Streams = INSERT only
Immutable, append-only

Tables = INSERT, UPDATE, DELETE
Mutable, Primary Key

25

A stream can be considered as an
immutable, append-only table

Stream Processors Communicate Through Streams

INPUT STREAMS OUTPUT STREAMS

SP

But internally they use tables

Payments Stream

Credit Score Stream

CREATE TABLE credit_scores AS
SELECT user, updateScore(p.amount)…

Credit Score Table

20

29

projection
(Group By Key, SUM, COUNT)

table changes

*See Streams and Tables: Two Sides of the Same Coin, M. Sax et al., BIRTE ’18

Streams
record history

Tables
represent state

Duality

https://dl.acm.org/citation.cfm?id=3242155

Similar to a materialized view in a database

20

Payments
Table

Credit Score
Table

Payments
Stream

Credit Score
Stream

Credit Score
Table

APP - Asynchronous
- Push query

STREAM
PROCESSOR

ACTIVE
DATABASE

- Synchronous
- Pull query

31

Joins

Customers

Orders

Lookup Customer

Table of Customers
(with Primary Key)

Joining a stream with a table

33

Joining two streams

orders.join(payments)

Bob’s
Order

Bob’s
Payment

Jill’s
Payment

Jill’s
Order

Orders

Payments

34

orders.join(payments)

Bob’s
Order

Bob’s
Payment

Jill’s
Payment

Jill’s
Order

Joining two streams

35

orders.join(payments)

Bob’s
Order

Bob’s
Payment

Jill’s
Payment

Jill’s
Order

Joining two streams

36

orders.join(payments)

Bob’s
Payment

Bob’s
Order

Jill’s
Payment

Jill’s
Order

Joining two streams

37

Key-value store
Bob’s
Order

Bob’s
Payment

Jill’s
Payment

Jill’s
Order

Joining two streams

38

Key-value store
Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

39

Key-value store
Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

40

Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

41

Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

42

Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

43

Bob’s
Order

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Joining two streams

44

Jill’s
Payment

Jill’s
Order

Bob’s
Payment

Bob’s
Order

Joining two streams

Streams represent history –> Cartesian Product

45

Payments
Stream

Orders
Stream

Join Output
(Stream)

200 Hat2

101 Boots2

105 Pants

101 Boots

200 Hat

101 $60

105 $3

200 $12

101 $50

200 $10

Joining Streams to Streams

46

Payments
Stream

Orders
Stream

Join Output
(Stream)

200 Hat2

101 Boots2

105 Pants

101 Boots

200 Hat

101 $60

105 $3

200 $12

101 $50

200 $10

Use time
window

Tools for correlating recent
events in time

More advanced temporal functions

48

Page VisitsOrders

Join Output
(Stream)

Session

Late and out-of-order data

49

Page VisitsOrders

Join Output
(Stream)

Window 1

Window 2

Stream processors provide tools
that handle asynchronicity,

leverage time and focus on ‘now’

51

Data Placement

Layered storage model

52

...

...

...

Storage
(Kafka)

Stream
Processor

read via
network

...

...

...

from stream’s P2

from table’s P2

‘Caching’ in
streaming layer

Partitioned Data (Fact-Fact joins)

53

...

...

...

...

P1

P2

P3

P4

SP 1

SP 2

SP 3

SP 4

Partitioned
KTable / TABLE

2 GB

3 GB

5 GB

2 GB

Storage (Kafka)

Broadcast Data (Fact-Dimension Joins)

54

...

...

...

...

P1

P2

P3

P4

Stream Task 1

Stream Task 2

Stream Task 3

Stream Task 4

GlobalKTable

2 + 3 + 5 + 2 = 12 GB

12 GB

12 GB

12 GB

Architecturally there are parallels e.g. Data Warehousing

ETL

FACTS DIMS

REPORTING

56

Interaction Model

Stream Processors Continuously Process Input to Output

INPUT STREAMS OUTPUT STREAMS

SP

TRADITIONAL
DATABASE

SELECT *
FROM

DB_TABLE

Active Query Passive Data

DB Table

EVENT STREAM
PROCESSING

CREATE TABLE AS
SELECT * FROM
EVENT_STREAM

Active Data Passive Query

Event Stream

Databases are
Pull Queries

What is Ben’s
credit score now?

695
APP

Stream Processors are
Push Queries

APP

Ben’s credit score is 670

Ben’s credit score is 710

Ben’s credit score is 695

...

PaymentsPayments

Hybrid stream processors provide both interaction models

ksqlDB

Payments
Stream

APP

Query
Credit Scores

Stream
Credit Scores

Summarize & Materialize
Credit Scores

APP

Unified Model For:

1. The Asynchronous and the Synchronous
2. Interaction with Active or Passive Data

Unified interaction model

Now

Earliest to now

The FutureThe Past

Standard
Database

Query

Unified interaction model

Now
The Future

Now to forever

The Past

Standard Stream
Processing Query

Unified interaction model

Now
The Future

Earliest to forever

The Past

‘Dashboard query’

Unified Interaction Model

Now

Earliest to now

The Future

Earliest to forever
Now to forever

The Past

PUSH PULL

SELECT user, credit_score
FROM orders
WHERE ROWKEY = ‘bob’
EMIT CHANGES;

SELECT user, credit_score
FROM orders
WHERE ROWKEY = ‘bob’;

Asynchronous => Pipelines

Transactions

Joins/aggregation/time-handling

APP

SQL SQL

SQL

APP

Other important variants

● Stream processors are often programming frameworks today
○ Storm
○ Flink
○ Kafka Streams

● Today we have active databases that include change streams:
○ Mongo
○ Couchbase
○ RethinkDB

As Software Eats the World

IS MORE
SOFTWARE

THE USER OF
THE SOFTWARE

We need
Asynchronous + Synchronous

Active + Passive

We still need
all of these

So is the traditional perception of “a database” enough?

Ben Stopford
Confluent

@benstopford
ben@confluent.io

