
Moving beyond request-reply:
How smart APIs are different.

@berndruecker





Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Failure will happen. 
Accept it!

But keep it local! 
Be resilient.



Photo by Tookapic, available under Creative Commons CC0 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/


„There was an error
while sending your

boarding pass“



Check-in

Web-UI

Me

Current situation



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation – the good part

Circuit 
breaker





Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation – the bad part



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation – the bad part



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Current situation – the bad part

Stateful
Retry





We are having some technical
difficulties and cannot present you

your boarding pass right away.

But we do actively retry ourselves, so 
lean back, relax and we will send it

on time.



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Possible situation – much better!



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Possible situation – much better!

Stateful
Retry



Warning:
Contains Opinion



Berlin, Germany

http://berndruecker.io/
mail@berndruecker.io
@berndruecker

Bernd Ruecker
Co-founder and 
Chief Technologist of
Camunda

http://berndruecker.io/


Check-In

You can use a workflow engine (=durable state machine)!

Barcode
REST

Stateful
retry



Want to see code?
https://github.com/berndruecker/flowing-retail

https://github.com/berndruecker/flowing-retail


has to implement

Retry
has to implement

Idempotency

Client Service Provider







Don‘t worry, it will happen safely –
even if you loose connection. 

Feel free to reload this page any time!



Photo by pixabay, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/zucchini-gem%C3%BCse-lebensmittel-green-700384/
https://creativecommons.org/publicdomain/zero/1.0/


Requirement: Idempotency of services!

Photo by pixabay, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/zucchini-gem%C3%BCse-lebensmittel-green-700384/
https://creativecommons.org/publicdomain/zero/1.0/


Requirement: Idempotency of services!

Photo by Chr.Späth, available under Public Domain.

https://commons.wikimedia.org/wiki/File:Pasta_2006_6.jpg
https://en.wikipedia.org/wiki/Public_domain


Make every service idempotent!

Credit
Card

Payment

Charge Credit Card
cardNumber

amount

Charge Credit Card
cardNumber

amount
transactionId

Not idempotent

Idempotent

charge

Generally: create Ids
as soon as possible



Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST



Distributed
systems 



It is impossible to
differentiate certain

failure scenarios.

Independant of
communication style!

Service 
Provider

Client



Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST



Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST

Cancel

charge



Being able to implement
long running services 

is essential for smart APIs
(on a technical level)

@berndruecker



Example

Booking Payment

Retrieve
Payment

@berndruecker



Example

Booking Payment
Credit
Card

Retrieve
Payment

@berndruecker



Example

Booking Payment
Credit
Card

Retrieve
Payment

Rejected

@berndruecker



Example

Booking Payment

If the credit
card was 

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker



Example

Booking Payment

If the credit
card was 

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker

A few
smart god services 
tell
anemic CRUD services 
what to do

Sam Newmann



Payment
failed

Who is responsible to deal with problems?

Booking Payment

If the credit 
card was 

rejected, the 
customer can 
provide new 

details

Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker



Payment
failed

Long running services

Booking Payment
Credit
Card

Retrieve
Payment

Rejected
Payment
received

Smart endpoints are 
potentially long-running

@berndruecker



Being able to implement
long running services 

is essential for smart APIs
(on a business level)

@berndruecker



Long running services
require async communication



Synchronous communication



Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson 
in “How did we end up here” at GOTO Chicago 2015



Check-in

Barcode 
Generator

Web-UI

Me

Output 
Mgmt

Asynchronous communication

You need to
monitor 
timeouts



Workflow…



Workflow…



Being able to implement
long running services 

makes it easy to get async

@berndruecker



Can your company
leverage your
hipster architecture?

S
h

u
tte

rsto
ck

You need to
change business
processes and
customer
experience!



Example

@berndruecker



Example

Payment

Seat
ReservationBooking

Ticket
Generation



Example

@berndruecker

sync



Example

@berndruecker



Weaknesses

Payment

Seat
ReservationBooking

Ticket
Generation

REST



Weaknesses: Latency creep

Payment

Seat
ReservationBooking

Ticket
Generation

REST

300 ms
1150 + x ms

600 ms

250 ms



Weaknesses: Availabiliy erosion

Payment

Seat
ReservationBooking

Ticket
Generation

REST
99 % uptime

99 % uptime

99 % uptime

96 % uptime



And it is even hard to implement

Payment

Seat
ReservationBooking

Ticket
Generation

REST



And it is even hard to implement

Payment

Seat
ReservationBooking

Ticket
Generation

REST



Typical pattern

Payment

Seat
ReservationBooking

Ticket
Generation

REST

Simulate synchronicty by waiting
(callback or polling)



@berndruecker

happy 
case

failure
case

Redesign your business process accordingly!

Or some interface
to poll for status

Sync in happy case

Async response



@berndruecker

Redesign your business process accordingly!



Your business processes need to be more reactive!

@berndruecker

https://www.reactivemanifesto.org/

https://www.reactivemanifesto.org/


Yeah!
Let‘s go reactive.



Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado


API

API

API
API

API

API

API

Microservices

External Services

Standard Software

„What the hell just happened?“

@berndruecker

https://twitter.com/berndruecker/


Example:
order fulfillment via
dash button

Photo by 0xF2, available under Creative Commons BY-ND 2.0 
license. https://www.flickr.com/photos/0xf2/29873149904/

@berndruecker

https://www.flickr.com/photos/0xf2/29873149904/
https://creativecommons.org/licenses/by-nd/2.0/
https://www.flickr.com/photos/0xf2/29873149904/


Three steps…
@berndruecker



(Micro-)services

Checkout

Payment

Inventory

Shipment

@berndruecker



Order
Placed

Payment
Received

Goods
Fetched

Notification

Checkout

Payment

Inventory

Shipment

Event-driven architecture
@berndruecker



Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

@berndruecker



Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

@berndruecker



The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html


Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment

@berndruecker



Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order 
placed

Payment 
received

Goods
shipped

@berndruecker



What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and P..19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Order

Extract the end-to-end responsibility

Checkout

Payment

Inventory

ShipmentPayment
received

Order 
placed

Retrieve
payment

@berndruecker



Order

Events & Commands

Checkout

Payment

Inventory

ShipmentPayment
received

Order 
placed

Retrieve
payment

@berndruecker

Event

Command

Fact, 
happened in the past, 
immutable

Intend, 
Want s.th. to happen



Order

It is not about the protocol!

Checkout

Payment

Inventory

Shipment

Order 
placed

Retrieve
payment

It can still be messaging!

@berndruecker



Order

It is about where to decide about the coupling!

Checkout

Payment

Inventory

Shipment

Order 
placed

Retrieve
payment

Order decides
. to listen to the event
. to issue the command

@berndruecker



Extract Orchestration logic



Workflows live inside service boundaries
@berndruecker



Your IT architecture

Choreography

Orchestration

@berndruecker

Your services
or applications



Monolith Chaos

Choreography

Orchestration

@berndruecker

Process Monitoring

Your services
or applications



Your IT architecture

Process Monitoring

Monolith Chaos

Choreography

Orchestration

Your services
or applications

Balance choreography and orchestration
@berndruecker



. Distributed systems are complex. At-least-once, retries and 
idempotency are here to stay. Embrace async!

. Long-running services make your life easier and your API 
smarter.

. Change business processes and customer experience accordingly

. Use commands + events = balance choreography and 
orchestration



Thank you!



mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

