
Moving beyond request-reply:
How smart APIs are different.
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Failure will happen. 
Accept it!

But keep it local! 
Be resilient.
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We are having some technical
difficulties and cannot present you

your boarding pass right away.

But we do actively retry ourselves, so 
lean back, relax and we will send it

on time.
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Warning:
Contains Opinion



Berlin, Germany

http://berndruecker.io/
mail@berndruecker.io
@berndruecker

Bernd Ruecker
Co-founder and 
Chief Technologist of
Camunda

http://berndruecker.io/


Check-In

You can use a workflow engine (=durable state machine)!

Barcode
REST

Stateful
retry



Want to see code?
https://github.com/berndruecker/flowing-retail

https://github.com/berndruecker/flowing-retail


has to implement

Retry
has to implement

Idempotency

Client Service Provider







Don‘t worry, it will happen safely –
even if you loose connection. 

Feel free to reload this page any time!
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Requirement: Idempotency of services!
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Requirement: Idempotency of services!

Photo by Chr.Späth, available under Public Domain.

https://commons.wikimedia.org/wiki/File:Pasta_2006_6.jpg
https://en.wikipedia.org/wiki/Public_domain


Make every service idempotent!

Credit
Card

Payment

Charge Credit Card
cardNumber

amount

Charge Credit Card
cardNumber

amount
transactionId

Not idempotent

Idempotent

charge

Generally: create Ids
as soon as possible



Distributed systems introduce complexity you have to tackle!
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Distributed
systems 



It is impossible to
differentiate certain

failure scenarios.

Independant of
communication style!

Service 
Provider
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Distributed systems introduce complexity you have to tackle!
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Being able to implement
long running services 

is essential for smart APIs
(on a technical level)
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A few
smart god services 
tell
anemic CRUD services 
what to do

Sam Newmann



Payment
failed

Who is responsible to deal with problems?

Booking Payment

If the credit 
card was 
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Payment
failed

Long running services

Booking Payment
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Smart endpoints are 
potentially long-running
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Being able to implement
long running services 

is essential for smart APIs
(on a business level)
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Long running services
require async communication



Synchronous communication



Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson 
in “How did we end up here” at GOTO Chicago 2015
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Being able to implement
long running services 

makes it easy to get async
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Can your company
leverage your
hipster architecture?

S
h
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You need to
change business
processes and
customer
experience!
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Weaknesses
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Weaknesses: Latency creep
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Weaknesses: Availabiliy erosion
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And it is even hard to implement
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Typical pattern

Payment

Seat
ReservationBooking

Ticket
Generation

REST

Simulate synchronicty by waiting
(callback or polling)
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happy 
case

failure
case

Redesign your business process accordingly!

Or some interface
to poll for status

Sync in happy case

Async response
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Redesign your business process accordingly!



Your business processes need to be more reactive!
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https://www.reactivemanifesto.org/

https://www.reactivemanifesto.org/


Yeah!
Let‘s go reactive.



Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado
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Microservices

External Services

Standard Software

„What the hell just happened?“
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Example:
order fulfillment via
dash button

Photo by 0xF2, available under Creative Commons BY-ND 2.0 
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Three steps…
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(Micro-)services
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Event-driven architecture
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The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html
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What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and P..19 / CC BY-SA 4.0
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Order

Events & Commands
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Event

Command

Fact, 
happened in the past, 
immutable

Intend, 
Want s.th. to happen



Order

It is not about the protocol!
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It can still be messaging!
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Order

It is about where to decide about the coupling!
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Payment
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Shipment

Order 
placed
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payment

Order decides
. to listen to the event
. to issue the command
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Extract Orchestration logic



Workflows live inside service boundaries
@berndruecker



Your IT architecture

Choreography

Orchestration
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Your services
or applications



Monolith Chaos

Choreography

Orchestration
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or applications



Your IT architecture

Process Monitoring

Monolith Chaos

Choreography

Orchestration

Your services
or applications

Balance choreography and orchestration
@berndruecker



. Distributed systems are complex. At-least-once, retries and 
idempotency are here to stay. Embrace async!

. Long-running services make your life easier and your API 
smarter.

. Change business processes and customer experience accordingly

. Use commands + events = balance choreography and 
orchestration



Thank you!
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