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● Product Manager at Red Hat 

● Former Architect/Consultant

● Committer at Apache Camel

● Author of “Camel Design Patterns” and 

“Kubernetes Patterns” books

● Latest interest: cloud native data

@bibryam

http://twitter.com/bibryam


What comes after 
Microservices?
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Agenda
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● Distributed system needs

● Monolithic architectures

● Cloud-native technologies

■ Kubernetes, Istio, Knative, Dapr
● Future architecture trends
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Modern distributed applications

● 100s of components and 1000s of instances

● Polyglot, independent, and automatable components

● Hybrid workloads on hybrid environments

● Open source, open standards, and interoperable

● Based on Kubernetes ecosystem



What are the needs of 
distributed applications?
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Distributed application needs
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Distributed application needs

Lifecycle management
● Deployment/rollback
● Placement/scheduling
● Configuration management
● Resource/failure isolation
● Auto/manual scaling
● Hybrid workloads (stateless, stateful, 

serverless, etc)



@bibryam
9

Distributed application needs

Advanced networking
● Service discovery and failover
● Dynamic traffic routing
● Retry, timeout, circuit breaking
● Security, rate limiting, encryption
● Observability and tracing
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Distributed application needs

Resource bindings
● Connectors for APIs
● Protocol conversion
● Message transformation
● Filtering, light message routing
● Point-to-point, pub/sub interactions
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Distributed application needs

Stateful abstractions
● Workflow management
● Temporal scheduling
● Distributed caching
● Idempotency
● Transactionality (SAGA)
● Application state



Monolithic architectures
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Traditional middleware capabilities

● Stateful primitives 

● Resource bindings 

● Networking
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Traditional middleware limitations

● Lifecycle management 

○ Single, shared language runtime
○ Manual deployment/rollback
○ Manual placement
○ Manual scaling
○ No resource/failure isolation



Cloud-native architectures

15



@bibryam
16

Microservices and Kubernetes
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Microservices and Kubernetes
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Health probes

18



@bibryam

Managed start/stop
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Declarative deployment
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Demands & placement

Predictable resource demand Automated placement
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Configuration management

● ConfigMaps used in Pods as:
○ environment variables
○ volumes 

● Secrets:
○ Minimal Node spread
○ Only stored in memory in a tmpfs
○ Encrypted in the backend store (etcd)
○ Access can be restricted with RBAC
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Foundational kubernetes capabilities

More Kubernetes Patterns
● Foundational patterns
● Structural patterns
● Configuration patterns
● Behavioural patterns

(For more Kubernetes Patterns, 
check out the link at the end of the slides)
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Batch/Periodic Job
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Hybrid workloads

Global SingletonStateful Service

Stateless Service
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Lifecycle capabilities

● Deployment/rollback

● Placement/scheduling

● Configuration management

● Resource/failure isolation

● Auto/manual scaling

● Hybrid workloads: stateless, stateful, 

batch jobs, serverless 



How do we extend 
Kubernetes?
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Out-of-process extension mechanism

Deployment guarantees Lifecycle guarantees
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Sidecar
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Controller Pattern
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Default schema
● ReplicaSet
● StatefulSet
● Job, CronJob

Default controllers
● replicaset
● statefulset
● job, cronjob

Managed resources 
state
● Pod
● PVC...

Custom controller -> Custom behaviour
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Operator Pattern
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kind: ConfigWatcher
apiVersion: k8spatterns.io/v1
metadata:
  name: webapp-config-watcher
spec:
  configMap: webapp-config
  podSelector:
    app: webapp

Custom operator
● Go
● Helm
● Ansible
● Java
● Python

Custom application
● AI/ML
● Big Data
● Storage
● Streaming
● Monitoring

CustomResourceDefinition + Controller = Operator



Kubernetes based 
platforms
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What is Service Mesh?
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What is Service Mesh?
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What is Service Mesh?
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What is Service Mesh?
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Networking capabilities

API Gateway Service Mesh
Abstract away details and decouple 

consumers from implementations

● Controls what’s allowed in/out

● Bridging security domains

● Request / response transformation

● Protocol, data format transformation

● API composition

● Rate limiting

Enhances the reliability and the visibility of the 

networking interactions

● Telemetry, tracing collection

● Service discovery, load balancing

● TLS termination/origination

● Request routing, traffic splitting

● Traffic shadowing

● Rate limiting
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What is Knative?

Serving

Common infrastructure 
for  request-driven 

interactions that can 
"scale to zero".

Eventing

Common infrastructure 
for consuming and 
producing events 

declaratively.

Kubernetes-based platform to deploy, and manage 
serverless workloads.
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Knative Serving concepts

● Scale-to-zero & activation

● Rapid autoscaling 

● Traffic splitting

● Callable by Knative eventing

● Simplified deployment model

○ Single Port

○ No PersistentVolumes

○  Single Container

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
  name: lotto
spec:
  replicas: 1
  selector:
    matchLabels:

app: lotto
  template:
    metadata:
      labels:
        app: lotto
  spec:
    containers:
    - image: cds19/lotto
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Knative Eventing concepts

● Sources (Kafka, CronJob,  Apache Camel 200+, etc)

● Broker implementations (In-memory, Kafka, etc)

● CloudEvents data format

● Trigger with filters

● Sequence: chaining multiple steps composed of 

containers
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Lifecycle, networking, binding capabilities
● Knative Serving

○ Simplified deployment for stateless workloads

○ Traffic based autoscaling including Scale-to-Zero

○ Traffic splitting for custom rollout / rollback scenarios

● Knative Eventing

○ External triggers for feeding Knative Services

○ Based on CloudEvents

○ Backed by proven messaging systems

○ Declarative messaging infrastructure
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What is Dapr?

Sidecar architecture

Developer first, standard APIs 
used from any programming 

language or framework.

Building blocks

Make it easy for developers to 
create microservice without 

being an expert in distributed 
systems.

A portable runtime for building distributed 
applications.
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Dapr building blocks

Distributed Tracing

See and measure the message 
calls across components and 
networked services

Service Invocation

Act as a reverse proxy with 
built-in service discovery, 
tracing and error handling

Publish & Subscribe

Secure, scalable messaging 
between services

Resource Bindings

Trigger code through events 
from input and output bindings 
to external resources.

Actors

Encapsulate code and data in 
reusable actor objects as a 
common microservices

State Management

Provides a key/value-based 
state API with pluggable state 
stores for persistence
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Dapr architecture
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Dapr on Kubernetes
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Full circle

● Centralized control plane

● Centralized data plane

● Centralized control plane

● Decentralized, highly-scalable data plane

Service discovery
Dynamic routing
Resiliency
Observability

Deployment
Placement
Config mgmt
Scaling

Bindings 
State abstraction 
Pub/Sub
Observability

Connectors
Eventing
Filtering
Serverless



Future cloud native trends
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Lifecycle trends
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● Introduction of Service Mesh Interface specification

● Architecture consolidation of Istio with istiod

● More L7 protocols: MongoDB, DynamoDB, ZooKeeper, MySQL, Redis, Kafka(8188)

○ KIP-559 can enable bridging, validation, encryption, filtering, transformation

●  HTTP Cache filter (eCache)

● HTTP tap filter (with matcher)

● WebAssembly (wasm) filters with dynamic loading (C++ -> Rust, Go, etc)
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Networking trends

https://github.com/envoyproxy/envoy/pull/8188
https://cwiki.apache.org/confluence/display/KAFKA/KIP-559%3A+Make+the+Kafka+Protocol+Friendlier+with+L7+Proxies
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Binding trends

Dev Environment Cloud

kamel CLI

Camel K 
Operator

Custom 
Resource

Running Pod

Fast redeploy!
Less than 1 second!

- from:
   uri: "direct:route"
   steps:
     - split:
         tokenize: ","
     - to: "mock:split"

Camel-K Operator:
1. Choose a runtime

2. Scaffold a project
3. Add boilerplate
4. Add dependencies
5. Create container image
6. Create Kubernetes 

resources for deployment
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State trends
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What does all this mean?
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Multi-runtime microservices are here
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Smart sidecars and dumb pipes
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What comes after Microservices?



Thank You
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https://k8spatterns.io

https://k8spatterns.io

