
Bilgin Ibryam
Product Manager @RedHat
@bibryam

The Evolution of
Distributed Systems on
Kubernetes

1

@bibryam

Bilgin Ibryam

2

● Product Manager at Red Hat

● Former Architect/Consultant

● Committer at Apache Camel

● Author of “Camel Design Patterns” and

“Kubernetes Patterns” books

● Latest interest: cloud native data

@bibryam

http://twitter.com/bibryam

What comes after
Microservices?

3

@bibryam

Agenda

4

● Distributed system needs

● Monolithic architectures

● Cloud-native technologies

■ Kubernetes, Istio, Knative, Dapr
● Future architecture trends

@bibryam
5

Modern distributed applications

● 100s of components and 1000s of instances

● Polyglot, independent, and automatable components

● Hybrid workloads on hybrid environments

● Open source, open standards, and interoperable

● Based on Kubernetes ecosystem

What are the needs of
distributed applications?

6

@bibryam
7

Distributed application needs

@bibryam
8

Distributed application needs

Lifecycle management
● Deployment/rollback
● Placement/scheduling
● Configuration management
● Resource/failure isolation
● Auto/manual scaling
● Hybrid workloads (stateless, stateful,

serverless, etc)

@bibryam
9

Distributed application needs

Advanced networking
● Service discovery and failover
● Dynamic traffic routing
● Retry, timeout, circuit breaking
● Security, rate limiting, encryption
● Observability and tracing

@bibryam
10

Distributed application needs

Resource bindings
● Connectors for APIs
● Protocol conversion
● Message transformation
● Filtering, light message routing
● Point-to-point, pub/sub interactions

@bibryam
11

Distributed application needs

Stateful abstractions
● Workflow management
● Temporal scheduling
● Distributed caching
● Idempotency
● Transactionality (SAGA)
● Application state

Monolithic architectures

12

@bibryam
13

Traditional middleware capabilities

● Stateful primitives

● Resource bindings

● Networking

@bibryam
14

Traditional middleware limitations

● Lifecycle management

○ Single, shared language runtime
○ Manual deployment/rollback
○ Manual placement
○ Manual scaling
○ No resource/failure isolation

Cloud-native architectures

15

@bibryam
16

Microservices and Kubernetes

@bibryam
17

Microservices and Kubernetes

@bibryam

Health probes

18

@bibryam

Managed start/stop

19

@bibryam

Declarative deployment

20

@bibryam
21

Demands & placement

Predictable resource demand Automated placement

@bibryam
22

Configuration management

● ConfigMaps used in Pods as:
○ environment variables
○ volumes

● Secrets:
○ Minimal Node spread
○ Only stored in memory in a tmpfs
○ Encrypted in the backend store (etcd)
○ Access can be restricted with RBAC

@bibryam
23

Foundational kubernetes capabilities

More Kubernetes Patterns
● Foundational patterns
● Structural patterns
● Configuration patterns
● Behavioural patterns

(For more Kubernetes Patterns,
check out the link at the end of the slides)

@bibryam

Batch/Periodic Job

24

Hybrid workloads

Global SingletonStateful Service

Stateless Service

@bibryam
25

Lifecycle capabilities

● Deployment/rollback

● Placement/scheduling

● Configuration management

● Resource/failure isolation

● Auto/manual scaling

● Hybrid workloads: stateless, stateful,

batch jobs, serverless

How do we extend
Kubernetes?

26

@bibryam
27

Out-of-process extension mechanism

Deployment guarantees Lifecycle guarantees

@bibryam

Sidecar

28

@bibryam

Controller Pattern

29

Default schema
● ReplicaSet
● StatefulSet
● Job, CronJob

Default controllers
● replicaset
● statefulset
● job, cronjob

Managed resources
state
● Pod
● PVC...

Custom controller -> Custom behaviour

@bibryam

Operator Pattern

30

kind: ConfigWatcher
apiVersion: k8spatterns.io/v1
metadata:
 name: webapp-config-watcher
spec:
 configMap: webapp-config
 podSelector:
 app: webapp

Custom operator
● Go
● Helm
● Ansible
● Java
● Python

Custom application
● AI/ML
● Big Data
● Storage
● Streaming
● Monitoring

CustomResourceDefinition + Controller = Operator

Kubernetes based
platforms

31

@bibryam
32

What is Service Mesh?

@bibryam
33

What is Service Mesh?

@bibryam
34

What is Service Mesh?

@bibryam
35

What is Service Mesh?

@bibryam
36

Networking capabilities

API Gateway Service Mesh
Abstract away details and decouple

consumers from implementations

● Controls what’s allowed in/out

● Bridging security domains

● Request / response transformation

● Protocol, data format transformation

● API composition

● Rate limiting

Enhances the reliability and the visibility of the

networking interactions

● Telemetry, tracing collection

● Service discovery, load balancing

● TLS termination/origination

● Request routing, traffic splitting

● Traffic shadowing

● Rate limiting

@bibryam
37

What is Knative?

Serving

Common infrastructure
for request-driven

interactions that can
"scale to zero".

Eventing

Common infrastructure
for consuming and
producing events

declaratively.

Kubernetes-based platform to deploy, and manage
serverless workloads.

@bibryam
38

Knative Serving concepts

● Scale-to-zero & activation

● Rapid autoscaling

● Traffic splitting

● Callable by Knative eventing

● Simplified deployment model

○ Single Port

○ No PersistentVolumes

○ Single Container

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: lotto
spec:
 replicas: 1
 selector:
 matchLabels:

app: lotto
 template:
 metadata:
 labels:
 app: lotto
 spec:
 containers:
 - image: cds19/lotto

@bibryam
39

Knative Eventing concepts

● Sources (Kafka, CronJob, Apache Camel 200+, etc)

● Broker implementations (In-memory, Kafka, etc)

● CloudEvents data format

● Trigger with filters

● Sequence: chaining multiple steps composed of

containers

@bibryam
40

Lifecycle, networking, binding capabilities
● Knative Serving

○ Simplified deployment for stateless workloads

○ Traffic based autoscaling including Scale-to-Zero

○ Traffic splitting for custom rollout / rollback scenarios

● Knative Eventing

○ External triggers for feeding Knative Services

○ Based on CloudEvents

○ Backed by proven messaging systems

○ Declarative messaging infrastructure

@bibryam
41

What is Dapr?

Sidecar architecture

Developer first, standard APIs
used from any programming

language or framework.

Building blocks

Make it easy for developers to
create microservice without

being an expert in distributed
systems.

A portable runtime for building distributed
applications.

@bibryam
42

Dapr building blocks

Distributed Tracing

See and measure the message
calls across components and
networked services

Service Invocation

Act as a reverse proxy with
built-in service discovery,
tracing and error handling

Publish & Subscribe

Secure, scalable messaging
between services

Resource Bindings

Trigger code through events
from input and output bindings
to external resources.

Actors

Encapsulate code and data in
reusable actor objects as a
common microservices

State Management

Provides a key/value-based
state API with pluggable state
stores for persistence

@bibryam
43

Dapr architecture

So
ur

ce
: h

tt
ps

:/
/g

ith
ub

.c
om

/d
ap

r/
do

cs

@bibryam
44

Dapr on Kubernetes

So
ur

ce
: h

tt
ps

:/
/g

ith
ub

.c
om

/d
ap

r/
do

cs

@bibryam
45

Full circle

● Centralized control plane

● Centralized data plane

● Centralized control plane

● Decentralized, highly-scalable data plane

Service discovery
Dynamic routing
Resiliency
Observability

Deployment
Placement
Config mgmt
Scaling

Bindings
State abstraction
Pub/Sub
Observability

Connectors
Eventing
Filtering
Serverless

Future cloud native trends

46

@bibryam
47

Lifecycle trends

So
ur

ce
: h

tt
ps

:/
/o

pe
ra

to
rh

ub
.io

@bibryam

● Introduction of Service Mesh Interface specification

● Architecture consolidation of Istio with istiod

● More L7 protocols: MongoDB, DynamoDB, ZooKeeper, MySQL, Redis, Kafka(8188)

○ KIP-559 can enable bridging, validation, encryption, filtering, transformation

● HTTP Cache filter (eCache)

● HTTP tap filter (with matcher)

● WebAssembly (wasm) filters with dynamic loading (C++ -> Rust, Go, etc)

48

Networking trends

https://github.com/envoyproxy/envoy/pull/8188
https://cwiki.apache.org/confluence/display/KAFKA/KIP-559%3A+Make+the+Kafka+Protocol+Friendlier+with+L7+Proxies

@bibryam
49

Binding trends

Dev Environment Cloud

kamel CLI

Camel K
Operator

Custom
Resource

Running Pod

Fast redeploy!
Less than 1 second!

- from:
 uri: "direct:route"
 steps:
 - split:
 tokenize: ","
 - to: "mock:split"

Camel-K Operator:
1. Choose a runtime

2. Scaffold a project
3. Add boilerplate
4. Add dependencies
5. Create container image
6. Create Kubernetes

resources for deployment

So
ur

ce
: h

tt
ps

:/
/g

ith
ub

.c
om

/a
pa

ch
e/

ca
m

el
-k

Live
updates!

@bibryam
50

State trends

So
ur

ce
: h

tt
ps

:/
/g

ith
ub

.c
om

/c
lo

ud
st

at
ei

o/
cl

ou
ds

ta
te

What does all this mean?

51

@bibryam
52

Multi-runtime microservices are here

@bibryam
53

Smart sidecars and dumb pipes

@bibryam
54

What comes after Microservices?

Thank You

55

@bibryam

https://k8spatterns.io

https://k8spatterns.io

