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A more 
personal
BBC



Why? 



Privacy promise

A more 
personal 
BBC for you

A better 
BBC for 
everyone

https://www.bbc.co.uk/usingthebbc/privacy-promise



The acceptable face of personalisation
Dr Who

Daleks



2. How does analytics processing 
work?



Typical data analytics end to end pipeline
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Typical data analytics ingestion flow
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3. The distributed monolith and 
lessons learnt



How our data analytics pipeline 
architecture was
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How our data 
analytics pipeline 
architecture was

Ingest logs 

Download logs 
(Python application)

Map reduce enrichment
(Apache Spark)

Big Data Warehouse
(Amazon Redshift)

Data Lake
3rd party 

FTP server

Batch load 
(Python application)

Orchestration
(Amazon Data Pipeline)



Microservices 
+ 

Big Data Billions of 
messages 

per day

Peta byte 
scale data 

lake

Highest scale data 
pipeline within our team



Lessons learnt



Lesson #1: batch processing
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Finding needles



Lesson #2: validating input and testing 
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Testing

Very few tests made it 
hard to make changes 
to the code with 
confidence

End to 
end tests

Integration 
tests

Unit tests               

Testing 
pyramid

Manual 
testing 



Lesson #3: tight coupling
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Lesson #3: tight coupling
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Lesson #4: 
Monitoring

Is every alert worth 
your team being 
interrupted?



Lesson #5: understanding our traffic 
patterns



Big News Days



Data volume is 
ever increasing



Lesson #6:
Cost effective 
solution



Lesson #7: 
Getting feedback 
from our internal 

users



4. Designing a new analytics 
ingestion architecture



“Small, autonomous services 
that work together, modelled 
around a business domain”

Definition of microservices from 
“Building microservices” book by 
Sam Newman



Revisiting the typical data analytics 
ingestion flow
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Smaller problems to solve
Squads to focus on each bounded context:

1. Receiving activity logs and keeping track of the data 
received

2. Model driven validation, enrichment and 
transformation to columnar format

3. Data aggregations (summaries) based on users’ needs 
to make easier getting value from the data



Different approaches 
to testing

Auto generated data
(load testing)

Production-like data
(quality)



New pipeline architecture
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Keeping track 
of the data

Introduced a lineage 
store



New pipeline architecture
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Operating the 
new 

architecture

Minimize the knowledge 
needed to be able to 
share the operational 
load within the team

💗 command line tools



New pipeline architecture
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Operating the 
new 

architecture

Alerting on missing 
data



New pipeline architecture
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Operating the 
new 

architecture

Replaying data 
without stopping 
everything else



New pipeline architecture
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New pipeline architecture
Ingest logs Input 

Queue
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Benefit #1
Enabling team to 
choose fit for 
purpose tech and 
architecture



Benefit #1: choose fit for purpose tech
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Benefit #2
Make it easier to 
change or replace 
microservices



Benefit #2: make it easier to change or replace 
services
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Benefit #3 Isolate failure



Benefit #3: isolate failure
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Benefit #4
Organic system 
growth as we 
operate it and learn



Benefit #4: organic system growth
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How our data 
analytics pipeline 
architecture was
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Main takeaways
Design with change in mind, you can’t predict 
how your traffic will evolve over time

Make sure everyone in the team can triage live 
issues

Choosing languages and tools which the whole 
team owns



5. The future of the Data Platform

54



Challenges as we look into the future

1. How will this architecture evolve as our data 
load increases?



Challenges as we look into the future

2. What are the future usage requirements for our 
data platform?



Challenges as we look into the future

3. How can we make it easier for our users to self 
serve while keeping the data secure?



A data story



Thank you!
@blanquish


