
Beyond the distributed
monolith

Blanca Garcia Gil
Principal Systems Engineer, BBC

@blanquish

Table of contents

1. The BBC and personalisation
2. What is data analytics processing?
3. The distributed monolith and lessons learnt
4. Designing a new analytics ingestion

architecture
5. The future of the Data Platform

A more
personal
BBC

Why?

Privacy promise

A more
personal
BBC for you

A better
BBC for
everyone

https://www.bbc.co.uk/usingthebbc/privacy-promise

The acceptable face of personalisation
Dr Who

Daleks

2. How does analytics processing
work?

Typical data analytics end to end pipeline

Analytics
webserver

Get
Activity

Logs
Ingestion

Data

Lake

Data
Warehouse

Collection Processing Storage and
access

Typical data analytics ingestion flow

Get / Receive
Activity

Logs

Validate
Data

Transform
Data

(Enrichment)

Format and
write Output

Data

Lake

Data
Warehouse

3. The distributed monolith and
lessons learnt

How our data analytics pipeline
architecture was

Batch
download

activity logs

Map reduce
enrichment

Format and
write

output

Data

Lake

Data
Warehouse

How our data
analytics pipeline
architecture was

Ingest logs

Download logs
(Python application)

Map reduce enrichment
(Apache Spark)

Big Data Warehouse
(Amazon Redshift)

Data Lake
3rd party

FTP server

Batch load
(Python application)

Orchestration
(Amazon Data Pipeline)

Microservices
+

Big Data Billions of
messages

per day

Peta byte
scale data

lake

Highest scale data
pipeline within our team

Lessons learnt

Lesson #1: batch processing

Batch
download

activity logs

Map reduce
enrichment

Format and
write

output

Data

Lake

Data
Warehouse

Finding needles

Lesson #2: validating input and testing

Batch
download

activity logs

Map reduce
enrichment

Format and
write

output

Data

Lake

Data
Warehouse

Testing

Very few tests made it
hard to make changes
to the code with
confidence

End to
end tests

Integration
tests

Unit tests

Testing
pyramid

Manual
testing

Lesson #3: tight coupling

Batch
download

activity logs

Map reduce
enrichment

Format and
write

output

Data

Lake

Data
Warehouse

Lesson #3: tight coupling

Batch
download

activity logs

Map reduce
enrichment

Format and
write

output

Data

Lake

Data
Warehouse

Lesson #4:
Monitoring

Is every alert worth
your team being
interrupted?

Lesson #5: understanding our traffic
patterns

Big News Days

Data volume is
ever increasing

Lesson #6:
Cost effective
solution

Lesson #7:
Getting feedback
from our internal

users

4. Designing a new analytics
ingestion architecture

“Small, autonomous services
that work together, modelled
around a business domain”

Definition of microservices from
“Building microservices” book by
Sam Newman

Revisiting the typical data analytics
ingestion flow

Get / Receive
Activity

Logs

Validate
Data

Transform
Data

(Enrichment)

Format and
write Output

Data

Lake

Data
Warehouse

Smaller problems to solve
Squads to focus on each bounded context:

1. Receiving activity logs and keeping track of the data
received

2. Model driven validation, enrichment and
transformation to columnar format

3. Data aggregations (summaries) based on users’ needs
to make easier getting value from the data

Different approaches
to testing

Auto generated data
(load testing)

Production-like data
(quality)

New pipeline architecture

Receive
Activity

Logs

Model driven
validation

and
enrichment

Intermediate
Data Lake

Data
summaries
generation

Data

Lake

Data
Warehouse

Keeping track
of the data

Introduced a lineage
store

New pipeline architecture

Receive
Activity

Logs

Model driven
validation

and
enrichment

Intermediate
Data Lake

Data
summaries
generation

Data

Lake

Data
Warehouse

Lineage store

Operating the
new

architecture

Minimize the knowledge
needed to be able to
share the operational
load within the team

💗 command line tools

New pipeline architecture

Receive
Activity

Logs

Model driven
validation

and
enrichment

Intermediate
Data Lake

Data
summaries
generation

Data

Lake

Data
Warehouse

Lineage store

Command line
tool

Operating the
new

architecture

Alerting on missing
data

New pipeline architecture

Receive
Activity

Logs

Model driven
validation

and
enrichment

Intermediate
Data Lake

Data
summaries
generation

Data

Lake

Data
Warehouse

Lineage store

Automated
alerts

Command line
tool

Operating the
new

architecture

Replaying data
without stopping
everything else

New pipeline architecture

Receive
Activity

Logs

Model driven
validation

and
enrichment

Intermediate
Data Lake

Data
summaries
generation

Data

Lake

Data
Warehouse

Lineage store

Automated
alerts

Command line
tool

Replay
data

New pipeline architecture
Ingest logs Input

Queue
New file event

Job Submitter
(Java application)

Model driven validation
and enrichment

(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

Benefit #1
Enabling team to
choose fit for
purpose tech and
architecture

Benefit #1: choose fit for purpose tech

Ingest logs Input
Queue

New file event
Job Submitter

(Java application)
Model driven validation

and enrichment
(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

Benefit #2
Make it easier to
change or replace
microservices

Benefit #2: make it easier to change or replace
services

Ingest logs Input
Queue

New file event
Job Submitter

(Java application)
Model driven validation

and enrichment
(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

Benefit #3 Isolate failure

Benefit #3: isolate failure

Ingest logs Input
Queue

New file event
Job Submitter

(Java application)
Model driven validation

and enrichment
(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

Benefit #4
Organic system
growth as we
operate it and learn

Benefit #4: organic system growth

Ingest logs Input
Queue

New file event
Job Submitter

(Java application)
Model driven validation

and enrichment
(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

How our data
analytics pipeline
architecture was

Ingest logs

Download logs
(Python application)

Map reduce enrichment
(Apache Spark)

Big Data Warehouse
(Amazon Redshift)

Data Lake
3rd party

FTP server

Batch load
(Python application)

Orchestration
(Amazon Data Pipeline)

Ingest logs Input
Queue

New file event
Job Submitter

(Java application)
Model driven validation

and enrichment
(Apache Spark and Apache Livy)

Intermediate
Data Lake

Resubmitter
Queue Resubmitter

(Java application)

Lineage Queue

Lineage
(Java application)

Lineage
Database

Bad Lineage Queue

Data summaries
generation

(Apache Airflow)
Big Data Warehouse
(Amazon Redshift)

Data Lake

Missing data alert
(Java application)

Command line tool
(Python)

New pipeline architecture

Main takeaways
Design with change in mind, you can’t predict
how your traffic will evolve over time

Make sure everyone in the team can triage live
issues

Choosing languages and tools which the whole
team owns

5. The future of the Data Platform

54

Challenges as we look into the future

1. How will this architecture evolve as our data
load increases?

Challenges as we look into the future

2. What are the future usage requirements for our
data platform?

Challenges as we look into the future

3. How can we make it easier for our users to self
serve while keeping the data secure?

A data story

Thank you!
@blanquish

