
The Scientific Method for 
Resilience

Christina Yakomin

Vanguard



The
Scientific 
Method

Observation

Question

Hypothesis

Experiment

Analysis

Conclusion



Failure Modes and Effects Analysis 

Chaos Engineering

Documentation & Planning

1

2

3

How does this 

apply to 

resilience?



Monday Tuesday Wednesday Thursday Friday

2pm - Failure Modes 

and Effects Analysis

Task due – List of 

Hypotheses

Prepare for 

experimentation

11am – Chaos 

GameDay Activity

Task due – Publish 

findings

Scenario: our schedule for the hypothetical week



Step 1: Observation

• Reference an architecture diagram

• Identify critical components

• Consider the business process flow

Client Web UI Cloud-based 

Microservice

Database

“Here’s our sample system architecture! Let’s discuss how resilient it is.”



ECS Webapp ECS Microservice RDS Database

Our Simple Sample Architecture



Step 2: Question

• Discuss how each might component fail

• What would the effect be in each of the failure scenarios?

Client Web UI Cloud-based 

Microservice

Database

“What do you think would happen if our database became unavailable?”



Step 3: Hypothesis

• Based on what the team knows about the system, discuss the answers to 
these questions

• Develop a hypothesis based on the group consensus

• People may not always agree!

Client Web UI Cloud-based 

Microservice

Database

“If our database became unavailable, writes would fail, but reads 

would be served from our microservice’s in-memory cache.”



Process Step Failure Mode Expected Behavior Hypothesis

Web UI sends request to 

Microservice to read info from 

database

Microservice is unavailable or 

returns an error

Respond to Web UI with an 

error indicating downtime

If the microservice is 

unavailable, then reads will fail

Microservice tries to read info 

from database

Database is unavailable or 

returns an error

Send back response with 

cached data from in-memory 

cache

If the database is unavailable, 

then reads will continue to 

succeed for a while due to the 

in-memory cached data

Web UI sends request to 

Microservice to write update to 

database

Microservice is unavailable or 

returns an error

Respond to Web UI with an 

error indicating downtime

If the microservice is 

unavailable, then writes will fail

Microservice tries to write 

update to database

Database is unavailable or 

returns an error

Respond to Web UI with an 

error indicating downtime

If the database is unavailable, 

then writes will fail

Failure Modes and Effects Analysis



Step 4: Experiment

• Run a test! Whether you’re using a vendor tool, an open source library, 
homegrown automation, or manual steps – inject the failure mode into 
the system.

Client Web UI Cloud-based 

Microservice

Database

“Let’s shut down our database in non-prod to test our assumption!”



Mechanisms for Fault Injection

Advanced 

Chaos Tools

Open Source 

Libraries

Custom Scripts Manual Efforts



Step 5: Analysis

• Use the available Telemetry/Observability to see the effects of the 
injected fault

• Compare these observations to the hypotheses. Were the team’s 
expectations met?

Client Web UI Cloud-based 

Microservice

Database

“OMG! A retry storm of write requests from our Web UI took out our microservice!!”



Step 6: Conclusion

• Document your work! Make sure all of the steps are written down and 
observations have been captured

• Spend some time action planning

• Modify “variables” (make system changes) and repeat!

Client Web UI Cloud-based 

Microservice

Database

“Let’s implement a circuit breaker in our Web UI, and better retry logic in our microservice so 

we’re more resilient to database failures. Then we’ll re-test!” 



Process Step Failure Mode Actual Behavior Desired Behavior Remediation Plan

Web UI sends request 

to Microservice to 

read info from 

database

Microservice is 

unavailable or returns 

an error

Web UI will retry 

forever with no limits

Use a circuit breaker 

to fail fast without 

overloading the 

microservice

Implement the circuit 

breaker pattern 

around the 

microservice request

Microservice tries to 

read info from 

database

Database is 

unavailable or returns 

an error

Send back response 

with cached data from 

in-memory cache

Send back response 

with cached data from 

in-memory cache

No action required

Web UI sends request 

to Microservice to 

write update to 

database

Microservice is 

unavailable or returns 

an error

Web UI will retry 

forever with no limits

Use a circuit breaker 

to fail fast without 

overloading the 

microservice

Implement the circuit 

breaker pattern 

around the 

microservice request

Microservice tries to 

write update to 

database

Database is 

unavailable or returns 

an error

Respond to Web UI 

with an error 

indicating downtime

Use limited retries with 

exponential backoff 

to handle transient 

database failures

Implement the retry 

logic around the 

database request



Vanguard’s 

real stories
Our first FMEA

Critical Workflows

FMEA at Scale



Christina Yakomin
Senior Technical Specialist
Site Reliability Engineering at Vanguard

/in/christina-yakomin

@SREChristina

Cloudy with a Chance of Chaos
SRECon ‘20


