
Complex event flows in
distributed systems
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3 common hypotheses I check today:

# Events decrease coupling
# Orchestration needs to be avoided
# Workflow engines are painful
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Simplified example:
dash button

Photo by 0xF2, available under Creative Commons BY-ND 2.0 
license. https://www.flickr.com/photos/0xf2/29873149904/
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Three steps…
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Who is involved? Some bounded contexts…

Checkout

Payment

Inventory

Shipment
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(Micro-)services

Checkout

Payment

Inventory

Shipment
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Autonomous (micro-)services

Checkout

Payment

Inventory

Shipment

Dedicated Application Processes

Dedicated infrastructure

Dedicated Development Teams
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Events decrease coupling
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Example

Checkout

Payment

Inventory

Shipment

The button blinks if we can
ship within 24 hours
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Request/response: temporal coupling

Checkout

Payment

Inventory

Shipment

Request
Response

The button blinks if we can
ship within 24 hours
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Temporal decoupling with events and read models

Checkout

Payment

Inventory

Shipment

Good
Stored

Read 
Model

Good
Fetched

The button blinks if we can
ship within 24 hours

*Events are facts about what happened (in the past)
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Order
Placed

Payment
Received

Goods
Fetched

Notification

Checkout

Payment

Inventory

Shipment

Event-driven architecture
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Events can decrease coupling*

*e.g. decentral data-management, read models, 
extract cross-cutting aspects
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received
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The danger is that it's very easy to make 
nicely decoupled systems with event 
notification, without realizing that you're 
losing sight of that larger-scale flow, and 
thus set yourself up for trouble in future 
years.

https://martinfowler.com/articles/201701-event-driven.html
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Monitoring Workflows Across Microservices 

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices
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Typical approachesDistributed Tracing

Data Lake / Event Monitoring

Process Mining

Process Tracking
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Stefan Tilkov: Microservice Patterns & Antipatterns - MicroXchg 2018

@berndruecker

https://www.youtube.com/watch?v=RsyOkifmamI


Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order 
placed

Payment 
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment
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Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order 
placed

Payment 
received

Goods
shipped
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Photo by born1945, available under Creative Commons BY 2.0 license.
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What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pedobear19 / CC BY-SA 4.0
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„Challenges?“

Source: 
Microservices orchestration survey, 
July 2018, 354 responses

https://camunda.com/microservices-orchestration-survey-results-2018/

@berndruecker
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Order

Extract the end-to-end responsibility

Checkout

Payment

Inventory

Shipment

*Commands have an intent about 
what needs to happen in the future

Payment
received

Order 
placed

Retrieve
payment
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Order

It is about where to decide about the coupling!

Checkout

Payment

Inventory

Shipment

Order 
placed

Retrieve
payment

Order decides
. to listen to the event
. to issue the command
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Order

It is about where to decide about the coupling!

Checkout

Payment

Inventory

Shipment

Order 
placed

Retrieve
payment

It can still be messaging!
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Commands help to avoid (complex)
peer-to-peer event chains
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Orchestration needs to be avoided
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Smart ESB-like middleware

Checkout

Payment

Inventory

Shipment

Order

Order 
placed

Payment 
received

Good
fetched

Good
shipped
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Dumb pipes

Checkout

Payment

Inventory

Shipment

Order

Smart endpoints 
and dumb pipes

Martin Fowler
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Danger of god services?

Checkout

Order

A few
smart god services 
tell
anemic CRUD services 
what to do

Sam Newmann

Payment

Inventory

Shipment
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Danger of god services?

Checkout

Payment

Inventory

Shipment

Order

A few
smart god services 
tell
anemic CRUD services 
what to do

Sam Newmann
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A god service is only created
by bad API design!
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Example

Order Payment

Retrieve
Payment
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Example

Order Payment
Credit
Card

Retrieve
Payment

@berndruecker



Example

Order Payment
Credit
Card

Retrieve
Payment

Rejected
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Example

Order Payment

If the credit
card was 

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected
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Example

Order Payment

Client of dumb endpoints easily become a god services.

If the credit
card was 

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected
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Payment
failed

Who is responsible to deal with problems?

Order Payment

If the credit 
card was 

rejected, the 
customer can 
provide new 

details

Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker



Payment
failed

Long running services

Order Payment
Credit
Card

Retrieve
Payment

Rejected
Payment
received

Smart endpoints are 
potentially long-running
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Persist thing
(Entity, Actor, …)

State machine or
workflow engine

Typical
concerns

DIY = effort, 
accidental
complexity

Scheduling, Versioning, 
operating, visibility, 
scalability, …

Handling 
State
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Workflow engines are painful

Complex, proprietary, heavyweight, central, developer adverse, …
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Avoid the wrong tools!

Death by properties panel

Low-code is great!
(You can get rid

of your developers!)

Complex, proprietary, heavyweight, central, developer adverse, …
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Workflow engines, 
state machines

It is

relevant
in modern 

architectures
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CADENCE

Silicon valley
has recognized

Workflow engines, 
state machines
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CADENCE
Workflow engines, 
state machines
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public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") //
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

What do I mean by
„leightweight?“

@berndruecker



public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") //
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

Build engine
in one line of
code
(using in-
memory H2)

@berndruecker



public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") 
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

Define flow
e.g. in Java 
DSL
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e.g. in Java 
DSL
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BPMN
Business Process

Model and Notation

ISO Standard
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public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") 
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

We can attach
code…
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public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") 
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

…that is
called when
workflow
instances pass 
through
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public static void main(String[] args) {    
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") 
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
} 

Start 
instances

@berndruecker



Payment

Now you have a state machine!
@berndruecker



Payment

Easy to handle time
@berndruecker



Distributed
systems 

@berndruecker



Example with synchronous communication

REST
Order Payment

Credit
Card
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Example with synchronous communication

REST
Order Payment

Credit
Card
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Example with synchronous communication

REST

Order Payment
Credit
Card
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Example with synchronous communication

REST
Order Payment

Credit
Card

Stateful
Retry
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Works also for asynchronous communication

Order Payment
Credit
Card

Monitor 
Timeouts
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Distributed
systems 
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It is impossible to
differentiate certain

failure scenarios:

Independant of
communication style!

Service 
Provider

Client

@berndruecker



Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST

@berndruecker



Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST

The service can be
long running.
You get a better API and less gods

@berndruecker



Workflows live inside service boundaries
@berndruecker



No BPM(N) monoliths

https://blog.bernd-ruecker.com/avoiding-the-bpm-monolith-when-using-bounded-contexts-d86be6308d8
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Pat Helland

“

Distributed Systems Guru 
Worked at Amazon, 
Microsoft & Salesforce

@berndruecker



Pat Helland

Grown-Ups Don’t Use 
Distributed Transactions

“

Distributed Systems Guru 
Worked at Amazon, 
Microsoft & Salesforce

@berndruecker



Distributed transactions using compensation *

Compensation

@berndruecker



Homework:
Try to do this purely event-driven!

Send to: mail@berndruecker.io

@berndruecker

mailto:mail@berndruecker.io


Biz Dev

Leverage
state machine & 
workflow engine

Living 
documentation

Visibility in 
testing

improve
communication

improve
communication

Ops
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Visual HTML reports for test cases
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Living documentation for long-running behaviour
@berndruecker



Proper
Operations

Visibility + Context
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Biz Dev

Leverage
state machine & 
workflow engine

Living 
documentation

Visibility in 
testing

Operate with visibility
and context

Understand and discuss
business processes

Evaluate optimizations
in-sync with

implementation

improve
communication

improve
communication

Ops

@berndruecker



Monitoring Workflows Across Microservices 

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

@berndruecker
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Tracking

Checkout Inventory

Payment Shipment

Event Bus

Workflow 
Engine

https://www.confluent.io/kafka-summit-sf18/the_big_picture @berndruecker

https://www.confluent.io/kafka-summit-sf18/the_big_picture


Journey towards more orchestration
@berndruecker



Vodafone, Liongate & WDW
Presented at CamundaCOn Berlin 2018

https://www.youtube.com/watch?v=nH--elFCDPU
https://www.youtube.com/watch?v=nH--elFCDPU


Before mapping processes 
explicitly with BPMN, the truth was 
buried in the code and nobody 
knew what was going on.

Jimmy Floyd, 24 Hour Fitnesse

„

@berndruecker



…
It addresses one of the core issues in a distributed 
microservices architecture—where is the source of 
truth for the coordinated interaction of the 
entire system?
…
the system we are replacing uses a complex peer-
to-peer choreography that requires reasoning 
across multiple codebases to understand.

https://medium.com/@sitapati/node-js-client-for-zeebe-microservices-orchestration-engine-72287e4c7d94

Josh Wulf
Credit Sense

@berndruecker

https://medium.com/@sitapati/node-js-client-for-zeebe-microservices-orchestration-engine-72287e4c7d94
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Lightweight workflow engines are
great – don‘t DIY*

*e.g. enabling potentially long-running services, solving hard
developer problems, can run decentralized

@berndruecker



Sales-Order & Order-Fulfillment 

via Camunda 

for every order worldwide 

(Q2 2017: 22,2 Mio)

@berndruecker



Code, code, code…
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Event-driven example

InventoryPaymentOrder ShippingCheckout Monitor

https://github.com/berndruecker/flowing-retail/

Human 
Tasks

H2 H2

@berndruecker

https://github.com/berndruecker/flowing-retail/


# Events decrease coupling: sometimes
read-models, but no complex peer-to-peer event chains!

# Orchestration needs to be avoided: sometimes
no ESB, smart endpoints/dumb pipes, balance orchestration and choreography

# Workflow engines are painful: some of them
lightweight engines are easy to use and can run decentralized,
they solve hard developer problems, don‘t DIY

@berndruecker



Thank you!
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mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
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