
Complex event flows in
distributed systems

@berndruecker

3 common hypotheses I check today:

Events decrease coupling
Orchestration needs to be avoided
Workflow engines are painful

@berndruecker

Warning:
Contains Opinion

Berlin, Germany

mail@berndruecker.io
@berndruecker

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

mailto:mail@berndruecker.io

Simplified example:
dash button

Photo by 0xF2, available under Creative Commons BY-ND 2.0
license. https://www.flickr.com/photos/0xf2/29873149904/

@berndruecker

https://www.flickr.com/photos/0xf2/29873149904/
https://creativecommons.org/licenses/by-nd/2.0/
https://www.flickr.com/photos/0xf2/29873149904/

Three steps…
@berndruecker

Who is involved? Some bounded contexts…

Checkout

Payment

Inventory

Shipment

@berndruecker

(Micro-)services

Checkout

Payment

Inventory

Shipment

@berndruecker

Autonomous (micro-)services

Checkout

Payment

Inventory

Shipment

Dedicated Application Processes

Dedicated infrastructure

Dedicated Development Teams

@berndruecker

Events decrease coupling

@berndruecker

Example

Checkout

Payment

Inventory

Shipment

The button blinks if we can
ship within 24 hours

@berndruecker

Request/response: temporal coupling

Checkout

Payment

Inventory

Shipment

Request
Response

The button blinks if we can
ship within 24 hours

@berndruecker

Temporal decoupling with events and read models

Checkout

Payment

Inventory

Shipment

Good
Stored

Read
Model

Good
Fetched

The button blinks if we can
ship within 24 hours

*Events are facts about what happened (in the past)

@berndruecker

Order
Placed

Payment
Received

Goods
Fetched

Notification

Checkout

Payment

Inventory

Shipment

Event-driven architecture
@berndruecker

Events can decrease coupling*

*e.g. decentral data-management, read models,
extract cross-cutting aspects

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

Monitoring Workflows Across Microservices

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

@berndruecker

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

Typical approachesDistributed Tracing

Data Lake / Event Monitoring

Process Mining

Process Tracking

@berndruecker

Stefan Tilkov: Microservice Patterns & Antipatterns - MicroXchg 2018

@berndruecker

https://www.youtube.com/watch?v=RsyOkifmamI

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order
placed

Payment
received

Goods
shipped

@berndruecker

Photo by born1945, available under Creative Commons BY 2.0 license.

@berndruecker

https://www.flickr.com/photos/12567713@N00/310639290
https://creativecommons.org/licenses/by/2.0/

What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pedobear19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

„Challenges?“

Source:
Microservices orchestration survey,
July 2018, 354 responses

https://camunda.com/microservices-orchestration-survey-results-2018/

@berndruecker

https://camunda.com/microservices-orchestration-survey-results-2018/

Order

Extract the end-to-end responsibility

Checkout

Payment

Inventory

Shipment

*Commands have an intent about
what needs to happen in the future

Payment
received

Order
placed

Retrieve
payment

@berndruecker

Order

It is about where to decide about the coupling!

Checkout

Payment

Inventory

Shipment

Order
placed

Retrieve
payment

Order decides
. to listen to the event
. to issue the command

@berndruecker

Order

It is about where to decide about the coupling!

Checkout

Payment

Inventory

Shipment

Order
placed

Retrieve
payment

It can still be messaging!

@berndruecker

Commands help to avoid (complex)
peer-to-peer event chains

@berndruecker

Orchestration needs to be avoided

@berndruecker

Smart ESB-like middleware

Checkout

Payment

Inventory

Shipment

Order

Order
placed

Payment
received

Good
fetched

Good
shipped

@berndruecker

Dumb pipes

Checkout

Payment

Inventory

Shipment

Order

Smart endpoints
and dumb pipes

Martin Fowler

@berndruecker

Danger of god services?

Checkout

Order

A few
smart god services
tell
anemic CRUD services
what to do

Sam Newmann

Payment

Inventory

Shipment

@berndruecker

Danger of god services?

Checkout

Payment

Inventory

Shipment

Order

A few
smart god services
tell
anemic CRUD services
what to do

Sam Newmann

@berndruecker

A god service is only created
by bad API design!

@berndruecker

Example

Order Payment

Retrieve
Payment

@berndruecker

Example

Order Payment
Credit
Card

Retrieve
Payment

@berndruecker

Example

Order Payment
Credit
Card

Retrieve
Payment

Rejected

@berndruecker

Example

Order Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker

Example

Order Payment

Client of dumb endpoints easily become a god services.

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Rejected

@berndruecker

Payment
failed

Who is responsible to deal with problems?

Order Payment

If the credit
card was

rejected, the
customer can
provide new

details

Credit
Card

Retrieve
Payment

Rejected
Payment
received

@berndruecker

Payment
failed

Long running services

Order Payment
Credit
Card

Retrieve
Payment

Rejected
Payment
received

Smart endpoints are
potentially long-running

@berndruecker

Persist thing
(Entity, Actor, …)

State machine or
workflow engine

Typical
concerns

DIY = effort,
accidental
complexity

Scheduling, Versioning,
operating, visibility,
scalability, …

Handling
State

@berndruecker

Workflow engines are painful

Complex, proprietary, heavyweight, central, developer adverse, …

@berndruecker

Avoid the wrong tools!

Death by properties panel

Low-code is great!
(You can get rid

of your developers!)

Complex, proprietary, heavyweight, central, developer adverse, …

@berndruecker

Workflow engines,
state machines

It is

relevant
in modern

architectures

@berndruecker

CADENCE

Silicon valley
has recognized

Workflow engines,
state machines

@berndruecker

CADENCE
Workflow engines,
state machines

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") //
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

What do I mean by
„leightweight?“

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow") //
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

Build engine
in one line of
code
(using in-
memory H2)

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow")
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

Define flow
e.g. in Java
DSL

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow")
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

Define flow
e.g. in Java
DSL

@berndruecker

BPMN
Business Process

Model and Notation

ISO Standard

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow")
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

We can attach
code…

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow")
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

…that is
called when
workflow
instances pass
through

@berndruecker

public static void main(String[] args) {
ProcessEngine engine = new StandaloneInMemProcessEngineConfiguration()
.buildProcessEngine();

engine.getRepositoryService().createDeployment() //
.addModelInstance("flow.bpmn", Bpmn.createExecutableProcess("flow")
.startEvent()
.serviceTask("Step1").camundaClass(SysoutDelegate.class)
.serviceTask("Step2").camundaClass(SysoutDelegate.class)
.endEvent()

.done()
).deploy();

engine.getRuntimeService().startProcessInstanceByKey(
"flow", Variables.putValue("city", "New York"));

}
public class SysoutDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) throws Exception {
System.out.println("Hello " + execution.getVariable("city"));

}
}

Start
instances

@berndruecker

Payment

Now you have a state machine!
@berndruecker

Payment

Easy to handle time
@berndruecker

Distributed
systems

@berndruecker

Example with synchronous communication

REST
Order Payment

Credit
Card

@berndruecker

Example with synchronous communication

REST
Order Payment

Credit
Card

@berndruecker

Example with synchronous communication

REST

Order Payment
Credit
Card

@berndruecker

Example with synchronous communication

REST
Order Payment

Credit
Card

Stateful
Retry

@berndruecker

Works also for asynchronous communication

Order Payment
Credit
Card

Monitor
Timeouts

@berndruecker

Distributed
systems

@berndruecker

It is impossible to
differentiate certain

failure scenarios:

Independant of
communication style!

Service
Provider

Client

@berndruecker

Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST

@berndruecker

Distributed systems introduce complexity you have to tackle!

Credit
Card

Payment
REST

The service can be
long running.
You get a better API and less gods

@berndruecker

Workflows live inside service boundaries
@berndruecker

No BPM(N) monoliths

https://blog.bernd-ruecker.com/avoiding-the-bpm-monolith-when-using-bounded-contexts-d86be6308d8

@berndruecker

https://blog.bernd-ruecker.com/avoiding-the-bpm-monolith-when-using-bounded-contexts-d86be6308d8

Pat Helland

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

@berndruecker

Pat Helland

Grown-Ups Don’t Use
Distributed Transactions

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

@berndruecker

Distributed transactions using compensation *

Compensation

@berndruecker

Homework:
Try to do this purely event-driven!

Send to: mail@berndruecker.io

@berndruecker

mailto:mail@berndruecker.io

Biz Dev

Leverage
state machine &
workflow engine

Living
documentation

Visibility in
testing

improve
communication

improve
communication

Ops

@berndruecker

Visual HTML reports for test cases
@berndruecker

Living documentation for long-running behaviour
@berndruecker

Proper
Operations

Visibility + Context

@berndruecker

Biz Dev

Leverage
state machine &
workflow engine

Living
documentation

Visibility in
testing

Operate with visibility
and context

Understand and discuss
business processes

Evaluate optimizations
in-sync with

implementation

improve
communication

improve
communication

Ops

@berndruecker

Monitoring Workflows Across Microservices

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

@berndruecker

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

Tracking

Checkout Inventory

Payment Shipment

Event Bus

Workflow
Engine

https://www.confluent.io/kafka-summit-sf18/the_big_picture @berndruecker

https://www.confluent.io/kafka-summit-sf18/the_big_picture

Journey towards more orchestration
@berndruecker

Vodafone, Liongate & WDW
Presented at CamundaCOn Berlin 2018

https://www.youtube.com/watch?v=nH--elFCDPU
https://www.youtube.com/watch?v=nH--elFCDPU

Before mapping processes
explicitly with BPMN, the truth was
buried in the code and nobody
knew what was going on.

Jimmy Floyd, 24 Hour Fitnesse

„

@berndruecker

…
It addresses one of the core issues in a distributed
microservices architecture—where is the source of
truth for the coordinated interaction of the
entire system?
…
the system we are replacing uses a complex peer-
to-peer choreography that requires reasoning
across multiple codebases to understand.

https://medium.com/@sitapati/node-js-client-for-zeebe-microservices-orchestration-engine-72287e4c7d94

Josh Wulf
Credit Sense

@berndruecker

https://medium.com/@sitapati/node-js-client-for-zeebe-microservices-orchestration-engine-72287e4c7d94
https://medium.com/@sitapati

Lightweight workflow engines are
great – don‘t DIY*

*e.g. enabling potentially long-running services, solving hard
developer problems, can run decentralized

@berndruecker

Sales-Order & Order-Fulfillment

via Camunda

for every order worldwide

(Q2 2017: 22,2 Mio)

@berndruecker

Code, code, code…
@berndruecker

Event-driven example

InventoryPaymentOrder ShippingCheckout Monitor

https://github.com/berndruecker/flowing-retail/

Human
Tasks

H2 H2

@berndruecker

https://github.com/berndruecker/flowing-retail/

Events decrease coupling: sometimes
read-models, but no complex peer-to-peer event chains!

Orchestration needs to be avoided: sometimes
no ESB, smart endpoints/dumb pipes, balance orchestration and choreography

Workflow engines are painful: some of them
lightweight engines are easy to use and can run decentralized,
they solve hard developer problems, don‘t DIY

@berndruecker

Thank you!

@berndruecker

mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

