TRB

DRIVETRIBE ENGINEERING

The world biggest motoring

community.

A social platform for petrolheads.

By Clarkson, Hammond and May. =

A content destination at the core.

Users consume feeds of content:
images, videos, long-form articles.

Content is organised In
homogenous categories called
“tribes”.

Different users have different
Interests and the tribe model allows
to mix and match at will.

ows wes DRIVETRIBES™ Q o @

Porsche

Official home of Porsche. Written by lucky enthusiasts at Porsche and by Mark

STORIES CHAT

a Mark Webber « 4 hours aoc

"A garage without a Porsche 911 is just a
dark hole.” - Walter Rohrl

¥

DRIVETRIBE ciars trises (WER Q Q

GOODBYE GAS STATION

Single article by James May. B s
d manths ago « 187/K Views

Contains a plethora of content and
engagement information.

COMMENTS (352) REPOST BUMPS (366) @

What do we need to compute an
aggregate like this?

- I'm looking forward to the first scandal, so we can talk about 'Elongate’.

DRIVETRIBE

GOODBYE GAS STATION

getUser(id: Id[User])

CARBOLICS @

d manths ago « 187/K Views

COMMENTS (352) REPOST BUMPS (366) @

- I'm looking forward to the first scandal, so we can talk about 'Elongate’.

DRIVETRIBE

GOODBYE GAS STATION

getUser(id: Id[User])
getTribe(id: Id[Tribe])

d manths ago « 187/K Views

COMMENTS (352) REPOST BUMPS (366) @

- I'm looking forward to the first scandal, so we can talk about 'Elongate’.

DRIVETRIBE TRIBES @Q 1 @

GOODBYE GAS STATION
getUser(id: Id[User])

getTribe(id: Id[Tribe])
getArticle(id: Id[Article])

d manths ago « 187/K Views

COMMENTS (352) REPOST BUMPS (366) @

ard to the first scandal, so we can talk gletlit 'Elongate’.

DRIVETRIBE chars Trises (WER Q D@

GOODBYE GAS STATION
getUser(id: Id[User])

getTribe(id: Id[Tribe])
getArticle(id: Id[Article])
countViews(id: Id[Article])

BUMPS (366) @

Qard to the first scandal, so we can talk gletlt 'Elongate’.

DRIVETRIBE chars Trises (WER Q D@

GOODBYE GAS STATION
getUser(id: Id[User])

getTribe(id: Id[Tribe])
getArticle(id: Id[Article])
countViews(id: Id[Article])

BUMPS (366) @

countComments(id: Id[Article])

Qard to the first scandal, so we can talk gletlt 'Elongate’.

DRIVETRIBE chars Trises (WER Q D@

GOODBYE GAS STATION
getUser(id: Id[User])

getTribe(id: Id[Tribe])
getArticle(id: Id[Article])
countViews(id: Id[Article])

REPOST BUMPS (366) @

countComments(id: Id[Article])

countBumps(id: Id[Article])

Qard to the first scandal, so we can talk gletlt 'Elongate’.

% Craig Scarborough in Everything Technical

: THE FERRARI SF71H INT
PROGRESS ON ALL FRONTS

rankArticles(forUserld).flatMap {a | ' -\ [e ey
getUser(id: Id[User])
getTribe(id: Id[Tribe]) @ T THE WEIGHT IS OVER

getArticle(id: Id[Article])

“ James May in James May's Carbolics

COU ntVieWS(id : Id [ArtiCIG]) — .’ 1 Craig Scarborough in Everything 1€

F1: THE MERCEDES W09 IN DETAIL,
MAKING THE BEST EVEN BETTER

A deep dive into what's new and what's goipg
sagnge on Mercedes new F1 challengs

Scalable. Jeremy Clarkson has 7.2M Twitter followers. Cannot really hack
It and worry about it later.

Performant. Low latency is key and mobile networks add quite a bit of it.

Flexible. AImost nobody gets it right the first time around. The abillity to
iterate is paramount.

Maintainable. Spaghetti code works like interest on debit.

Clients interact with a fleet of stateless servers
(aka “API” servers or “Backend”) via HTTP
(which is stateless).

Global shared mutable state (aka the Database).
Starting simple: Store data in a DB.

Starting simple: Compute the aggregated views
on the fly.

DRIVETRIBE CHATS TRIBES @Q Q@

GOODBYE GAS STATION
getUser(id: Id[User])

getTribe(id: Id[Tribe])
getArticle(id: Id[Article])

REPOST BUMPS (366) @

countComments(id: Id[Article])

countBumps(id: Id[Article])

d to the first scandal, so we can talk ¥t Elongate’.

% Craig Scarborough in Everything Technical

F1: THE FERRARI SF71H IN DETAIL -
PROGRESS ON ALL FRONTS

FERRARI'S NEWLY RELEASED F1 CAR SHOWS
AGGRESSIVE DESIGN IN EVERY AREA IN ORDER TO
CHASE MERCEDES FOR THE CRCWN IN 2018

o |) L‘

(6 queries per Iltem) x (Y items per

pag e) | “ James May in James May's Carbolics
-z ¢ ~ THE WEIGHT IS OVER

Cost of ranking and personalisation. LS b o, sl

Quite some work at read time.

@ Craig Scarborough in Everything Technical

Slow. Not really F1: THE MERCEDES W09 IN DETAIL,

MAKING THE BEST EVEN BETTER

A deep dive into what's new and what's going to
change on Mercedes new F1 challenger

Compute the aggregation at write
time.

Then a single query can fetch all the
views at once. That scales. gerAnticleViews
L:s-rI.Ar-ﬁclv.e,./J

Compute the aggregation at write
time.

Then a single query can fetch all the
views at once. That scales. gerAnticleViews
L:s-rI.Ar-ﬁclv.e,./J

Compute the aggregation at write
time.

Then a single query can fetch all the
views at once. That scales. gerAnticleViews
L:s-rI.Ar-ﬁclv.e,./J

Compute the aggregation at write
time.

Then a single query can fetch all the
views at once. That scales. gerAnticleViews
L:s-rI.Ar-ﬁclv.e,./J

sendNotification

sendNotification

updateUserStats

sendNotification
updateUserStats.
What if we have a cache?

Or a different database for search?

A simple user action is triggering a

potentially endless sequence of side
effects.

Most of which need network |O.

Many of which can .
04

(ice ovicle Atom| City?

What happens if one of them fails? {
What happens if the server fails Iin
the middle?

We may have transaction support in
the DB, but what about external
systems?

Inconsistent.

LiKe Ar-ﬁcle. ‘

Concurrent mutations on a global
shared state entail race conditions.

State mutations are destructive and
can not be (easily) undone.

A bug can corrupt the data
permanently.

Model evolution becomes difficult.
Reads and writes are tightly
coupled.

Migrations are scary.

This IS neither nor

|

LiKe Ar-ﬁcle.

xtensibilit

Let’s take a step back and try to decouple things.

Clients send events to the API: “John liked Jeremy’s post”, “Maria updated
her profile”

Events are immutable. They capture a user action at some point in time.

Every application state instance can be modelled as a projection of those
events.

Persisting those yields an append-
only log of events.

An event reducer can then produce
application state instances.

Even retroactively. The log Is
immutable.

This is event Sou rcing. APLICATION
T\

_

The write-time model (command
model) and the read time model
(query model) can be separated.

Decoupling the two models opens the
door to more efficient, custom
Implementations.

This is known as Command Query
Responsibility Segregation aka

CQRS.

) T

o

i [VENT R[DU(ERD

RN
' .t”,".)‘:f ~

@re Like Evenib VEN 06

i [VENY R[DU(ERQ

. .l" "‘)‘:.“

A |
Store Like Event [V} AfticleStatsRedu

%7‘/——-

i [VENT R[DU(ERD

AP
' "I" ')'

- —gy NoQtificationRedu

Store Like Event [V ArticleStatsReduc
L R

i [VENT R[DU(ERD

17

Store Like Event FVENT L6

A % NotificationReduc
/7%/_ o ,,,.-_\, A{;\i_cleStatsReduc

& FVENT REDUCERS

/7 @serStatsReducer

Store Like Event [VENTL0G

A . NotificationReduc
%7\‘/_ o _.,_..-.) A{cheStatsReduc

& FVENT REDUCERS

17

UserStatsReduce

<And SO On..

NotificationReduc
Store lee Event I\H 06 }
_____ A%cleStatsReduc

[VENI R[DU(ERS

—

UserStatsReduce

Sky Is the limit

NotificationReduc
Store Like Event VENT 06 }
N A%cleStatsReduc

" TV |[Extensibilit
+ i\ [DU([KS
PI,mMalntalnam |

17

UserStatsReduce

Articl
Get Articles Sky Is the limit

NotificationReduc
Store lee Event I\H 06 }

A%cleStatsReduc

UserStatsReduce

t Articl
Get Articles Sky Is the limit

NotificationReduc
Store lee Event I\H 06 }
_____ A%cleStatsReduc

UserStatsReduce

t Articl
Get Articles Sky Is the limit

NotificationReduc
Store lee Event I\H 06 }
_____ A%cleStatsReduc

il Concurrepdyra:

17

UserStatsReduce

Get Articles Sky Is the limit

IMPLEMENTATION?

WE NEED A LOG

Distributed, fault-tolerant, durable and fast append-only Ic
Can scale the thousands of nodes, producers and consu

Each business event type can be stored In its own topic.

WE NEED A STREAM
PROCESSOR

Scalable, performant, mature.
Elegant high level APIs in Scala.

Powerful low level APIls for advanced tuning.

Multiple battle-tested integrations.

Very nice and active community.

WE NEED DAIASTORE

Horizontally scalable document store.
Rich and expressive query language.

Dispensable. Can be replaced.

WE NEED AN API

Asynchronous web application framework.

Written in Scala. A akka

Very expressive routing DSL.

Http

Any modern web application framework would do.

Produce aggregated
views

Produce aggregated
views

A 1)

| s

R
.-

Retrieve aggr
views

A REAL WORLD EXAMPLE

——

CHATS TRIBES DRIVETRIBE @ &4 Q O &

Thousands of people like the fact that & E ., w0 o (s 00)
Jeremy Clarkson is a really tall guy

Users can “bump” a post if they like it

BumpEvent (
id: |],
postId: Id[15
userld: | 1,
bumpedOn:

Damn. Another dream dashed

Produce aggregated
views

case class State(id: Id[Post], bumpCounter: ??7)

object PostStatsReducer {

~ def apply(bumpEvents: DataStream[BumpEvent]): DataStream[State] = ?7?
}

case class State(id: Id[Post], bumpCounter: Long)
object State {

~ def apply (bumpEvent: BumpEvent): State =

- State(bumpEvent.postId, 1.)

}

object PostStatsReducer {
~ def apply (bumpEvents: DataStream[BumpEvent]): DataStream[State] =

bumpEvents
- .map(State())
.keyBy(.id)
State(statel.id, statel.bumpCounter + state2.bumpCounter)

. combine

IIIII'lIBA'I'ES

//‘
.cy

» ; \\.:‘ '

,nurucnri‘s’ivmmnm

Use Flink with at least once

semantics E Illll'llﬂl'l'is

ol

IIlII'lIﬂA'I'ES‘HEIIYWIIEIIE

Use Flink with at least once
semantics E llIll'llﬂlI'I'ES

Our system is eventually consistent

>

DUPLICATES EVEI

we know we’re doing some kind of combine operation over States

we know we’re doing some kind of combine operation over States

we want our counter to be idempotent: a |+l a ===

we know we’re doing some kind of combine operation over States
we want our counter to be idempotent: a |+l a ===

we also want our counter to be associative:
al+l (bl+lc)===(al+l b) I+l c

Band[T] {
(t1: T, t2:
s

Closed
ldempotent

Associlative

case class StatelT: Band](id: Id[Post], bumpCounter: T)
object State {
~ def apply (bumpEvent: BumpEvent): State = ?7?

implicit val stateBand: Band[State] = 777

}

object PostStatsReducer {
 def apply(bumpEvents: DataStream[BumpEvent])(implicit band: Band[State]): DataStream[State] =

bumpEvents
- .map(State())
.keyBy(.id)
band.combine(statel, state2)

. combine

) [Set[u]] {

(s1: [U], s2: [U]):
sl ++ s2

State(id: Id[], bumps:
State {

stateBand |
(s1: , S2:):
(s1.id, sl.bumps |+| s2.bumps)

[U]

] {

1)

If all components of a case
class have a band then so does

the case class

would normally bring in Set
iImplementation from a library

normally that library would have
a law testing module

case class State(id: Id[Post], bumps: Set[BumpEvent])
object State {
~ def apply (bumpEvent: BumpEvent): State =

- State(bumpEvent.postId, Set(bumpEvent))

implicit val stateBand = new Band[State] {

~ def combine(sl: State, s2: State): State =
~ State(sl.id, sl.bumps |+| s2.bumps)

}

a |

object PostStatsReducer {
- def apply(bumpEvents: DataStream[BumpEvent])(implicit band: Band[State]): DataStream[State] =
~ bumpEvents
- .map(State())
.keyBy(.id)

band.combine(statel, state2)

.combine

Adding events: Semigroup/Monoid
Duplicate events: Band

Out of order and duplicate events: Semilattice

