Putting Node.js Serverless Apps

into Production without the
Pitfalls

Edin Shanaghy

@eoins

11\
fourTheorem

@eoins



il X [E

Modern
Applications

How to
Build Them

Serverless

J S JavaScript and
Serverless

Pitfalls and how we
A overcome them

®  Recipes for Effective
g Serverless with JS

@eoins



The Modern Application

Scalable Intelligent
User-focused Fast to market

Reliable Experimentall

@eoins



The best way to build a

modern application



Build it with Wordpress!



Build it with Haskell!



Build 1t with Rails!



Build it with Erlang!



Build it with Java
Microservices

on Kubernetes



Build 1t with

using JavaScript



Why would you do this?!!



REALITY

@eoins




There are always trade-offs



The pursuit of perfection



David Redfern/Redferns/Getty Images




KEITH JARRETT
THE KOLN CONCERT




CLOUD

T
INFRASTRUCTURE
COMPLEXITY

Pas

MICROSERVICES

A

FUNCTIONS AS
A SERVICE

>

laC

5%

MANAGED
SERVICES

@eoins



Serverless

#4 — No idling infrastructure

#5 — Less code

@eoins



JavaScript

@eoins



The Success of Node.js

Event-Driven I/O

( Modules

Easy to: Comprehend

@eoins



s JS a Good Fit for Serverless?

* One process per request
* No HTTP server
* Lack of types

-ast to start
—ast runtime
No compilation overhead
Huge module ecosystem

—amiliarity, ubiquity

 Still highly productive!
* JSON

@eoins



50-60% of Lambda Functions

Lambda Adoption by Runtime

I 35.84%

21.01%

I 5.92%

24.39%

B 3.30%
NETCore 5.62% Insights Snapshot

-2 05% + In terms of functions, developers mostly rely on Node.js and Python for building
" ° ipplications onLambda, with Java as the third most-used runtime.However,
0
3.88% with the AWS launch of Provisioned Concurrency mitigating cold start impacts and
VPC improvements, making Lambda more attractive for enterpri that require
I 0.22% isolated environmen t the adoption trends for Java to incr:
Ruby

0.10% The large percentage of Java invocations for a relatively small number of related
functions demonstrates a higher throughppit based on organizations potentially
Custom | 0.15% focusing ondata proc ng use co inwhich cold starts could b ofanis
H addition, eviden € that companies could be lift-and-shifting applicatio
Runtime 0.04%
in the languages the > currently using.

entage of all functions monitorec

ge of all invocations monitorec

O New Relic.

New Relic, For the Love of Serverless 2020 Report @eoins



Should We Choose JavaScript?

It matters less than ever before
Start with what you know

Experiment

Solve the problems you observe

@eoins



handler.js

const {findAccommodation} = require('./lib/accommodation’);

async function lookup({queryStringParameters: {county}}) {
const result = await findAccommodation(county);
return {
statusCode: 200,
body: JSON.stringify(result),
s
s

module.exports = {lookup};

@@L



T1b/accommodation.js

const AWS = require('aws-sdk');
const 83 = new AWS.S3();

const SELECT_PARAMS = {

Bucket: process.env.BUCKET_NAME, Key: process.env.CSV_FILE, ExpressionType: 'SQL',
InputSerialization: {CSV: {FileHeaderInfo: 'USE', RecordDelimiter: '\r\n'}},
OutputSerialization: {JSON: {RecordDelimiter: '\n'}},

Fi

async function findAccommodation(county) {
const response = await s3.selectObjectContent({
... SELECT_PARAMS,
Expression: “SELECT * FROM S30bject s WHERE s.AddressRegion = '${county}'’,

}).promise();

let result = '';
for await (const event of response.Payload) {
if (event.Records)
result += event.Records|'Payload'].toString();
}
}
return result.trim().split('\n').map(JSON.parse);

}

module.exports = {findAccommodation}; @eoins



serverless.yml

provider:
name: aws
runtime: nodejsl2.x
stage: dev
region: eu-west-1
endpointType: REGIONAL
tracing:
apiGateway: true
lambda: true
logs:
restApi: true
logRetentionInDays: 7
iamRoleStatements:
- Effect: Allow
Action:
- s3:GetObject
- s3:HeadObject
Resource:
- arn:aws:s3 ::: fourtheorem-jsshow/accommodation.csv

functions:
lookup:
environment:
BUCKET_NAME: fourtheorem-jsshow
CSV_FILE: accommodation.csv
handler: handler.lookup
events:
- http:
path: accomodation
method: get
cors: false @Deohws



curl https://8dmtx7al23.execute-api.eu-west-
1.amazonaws.com/dev/accomodation\?county\=Louth

}

"Name": "Heritage",

"Url": "http://www.heritagebandb.ie",
"Telephone": "+353(0)429335850",
"Longitude": "-6.41417999999999",
"Latitude": "53.9702960139452",
"AddressRegion": "Louth",
"AddressLocality": "Dundalk",
"AddressCountry": "Republic of Ireland"

"Name": "Arden B&B",

"Url": "https://www.ardenbnb.com",
"Telephone": "+353(0)419881556",
"Longitude": "-6.27753932088683",
"Latitude": "53.7450220911285",
"AddressRegion": "Louth",
"AddressLocality": "Baltray",
"AddressCountry": "Republic of Ireland"

@eoins



requestId: d791228a-687f-45ed-
918c-3165a7c20f5c, 1p:

91.123.228.33, caller: -, user:

, requestTime:
29/Feb/2020:14:23:14 +0000,
httpMethod: GET, resourcePath:
/accomodation, status: 200,
protocol: HTTP/1.1,
responseLength: 105418

Response time distribution ©

Click and drag to filter the traces by response time.

200ms

2 Response time distribution Duration distribution

' avg. 647msJ‘
‘* 30 t/min
\Y:\:Q*?’,/

jsshow-dev-lookup
AWS::Lambda




Challenges

Learning Curve Best Practices? Moving Target

Organisational
Change

New Models Migration is Hard

@eoins



Joy

Serverless Adoption Rollercoaster

A Scaling to
MVP massive user Maturity
Deployed numbers!
Initial PoC
Lock down
API| Gateway +
Architecting a Migrate IAM Roles
Production DynamoDB
Application Schema
>
Experience

@eoins



1. Put all best practices together
2. Make opinionated decisions
3. Replicate production environment

4. Make it open source

@eoins



Project

Structure CI/CD Logging Security
SN Devt;(:t:\ent m"l:'eegs::?:igo " En’lt'je.:::)i;\egnd
Ce?tg:aies Domains Architecture Mi‘::;;g
SR User Accounts Front End Data Access

‘Discovery’




fourTheorem / slic-starter ® Unwatch~ 8 % Unstar 48 | YFork 47

<> Code Issues 26 Pull requests 0 Projects 1 Security Insights Settings

A complete, serverless starter project

serverless aws cicd tutorial enterprise Manage topics

D 502 commits ¥ 6 branches © 1release 42 3 contributors sfs MIT
I _—

)
Branch: master v New pull request Create new file = Upload files = Find file Clone or download v

a; Imammino and eoinsha updated package-log with npm audit fix Latest commit 4ebe521 7 days ago

api-service Derive from address at build time 20 days ago
build-scripts Update CICD region 20 days ago
certs Consolidate serverless config for certs 2 months ago
checklist-service Change README 19 days ago
cicd Correct selection of site URL based on (no-)domain 20 days ago

e2e-tests Add SDK to e2e tests 20 days ago

slic.app

@eoins



Sign Up

Password

SIGN UP

Already registered? Log in here




SLIC Lists LOG OUT

ACME Project Kick Off Beta Project Kickoff Project Review List
Checklist of items to be completed prior to project Checklist of items to be completed before kickoff Created 2 minutes ago

kick off of Project Beta

Created 8 days ago Created 2 minutes ago

Go Live Checklist Launch Party G

Created less than a minute ago Created less than a minute ago



< SLIC Lists > List LOG OUT

ACME Project Kick Off A

Created 8 days ago

Checklist of items to be completed prior to project kick off

: Contracts Signed and Sealed ‘
: Beer in Fridge )
Stakeholders Identified )

Issue Tracker in Place ]




g 0 © = O S

Your SLIC List Inbox x

no-reply@sliclists.com via amazonses.com

tome ¥

Congratulations! You created the list Beta Project Kickoff




Targets AWS




Frontend Web
Application

AWS
Amplify

A

i  Certificate
i Manager

' Route 53

Checklist
Service

API
Gateway

Lambda DynamoDB

d.

&

CloudWatch

Metrics

CloudWatch

CloudFront

Front

S3 Bucket ﬂ

End

EI
Parameter
Store

\J

@l)

User Service

JE1-EN

Sharing Service

A

\J

&N

Cognito | Gateway + Lambda GafeF\,Alla Lambda
User Pool | AWS_IAM y
v — |
Event Bus ;
Welcome ' C—=] Email
Yy
»| Service C—1 Service
&3 Y = ollle}——
AWS Rule SQS Queue
Amazon Lambda Lanmbda
EventBridge
API Service
&
API Route 53 ) .
AWS X-Ray Gateway Simple Email
Service (SES)

Logs




Separate Accounts

Root Account

CI/CD Staging

Account Account

Production
@ Account
fs]=

AWS
Organizations

\weulnS



Serverless Framework

serverless

CDK
£



Infrastructure

aws Services v Resource Groups v * Q Ireland ¥  Support ¥

SN

jsshow-dev-lookup cork

Resource-based policy info

4
S

"Version": "2012-10-17",

"Id": "default",

"Statement": [

{
"Sid": "jsshow-dev-LookupLambdaPermissionApiGateway-11R12BCAPS6Y9",
"Effect": "Allow",
"Principal”: {
"Service": "apigateway.amazonaws.com"

1

4

3,
"Action": "lambda:InvokeFunction",
"Resource": "arn:aws:lambda:eu-west-1:123456789101: function: jsshow-dev-lookup",
"Condition": {
"ArnLike": {
"AWS : SourceArn": "arn:aws:execute-api:eu—west—l:123456789101:8dmtx?q649/*/*"

1
2
3
4
5
6
7
8v
9
10
11
12

PRRRRE R
Woo~NOU D W
4 4

@eoins



Infrastructure

aws> kinesis create-stream --stream-name=click_events --shard-count=5|]

--shard-count (integer)
The number of shards that the stream will use. The throughput of
the stream is a function of the number of shards; more shards are
required for greater provisioned throughput.

DefaultShardLimit;

[F2] Fuzzy: ON [F3] Keys: Emacs [F4] Multi Column [F5] Help: ON [F9] Foc
[2] O:aws-shellxZ "eoinmac.local" 21:05 29-Feb-20

@@L



Infrastructure

7 artifactsBucket6C289622:

8 Type: AWS::S3::Bucket

9 Properties:

10 BucketName:

11 Fn::Join:

12 — mnmn

13 - - slic-build-artifacts-
14 - Ref: AWS::AccountId
15 — m_n

16 - Ref: AWS::Region

17 VersioningConfiguration:

18 Status: Enabled

19 UpdateReplacePolicy: Retain
20 DeletionPolicy: Retain

@@L



const artifactsBucket = new Bucket(this, 'artifactsBucket', {
bucketName: “slic-build-artifacts-${this.account}-${this.region} ,
versioned: true,
})
const sourceCodeBuildRole = new CodeBuildRole(this, 'sourceCodeBuildRole')
new OrchestratorPipeline(this, 'orchestrator-pipeline', {
artifactsBucket,
sourceCodeBuildRole
})
const buildRole = new CodeBuildRole(this, "buildRole)
const deployRole = new CodeBuildRole(this, “deployRole’)
const moduleBuildProject = new ModuleBuildProject(this, 'module_build', { role: buildRole
const moduleDeployProject = new ModuleDeployProject(this, "module_deploy , {
role: deployRole
})
; [StageName.stg, StageName.prod].forEach((stageName: StageName) => @
const pipelineRole = new ModulePipelineRole(

this,
“${stageName}PipelineRole" (::[:)|<:
)



Continuous Deployment

@eoins



- Build/deploy changed services only

- Branch builds to dev env
%'SE €D - Consider dependencies between services
Application lac - Avoid manual config (SSL cert, etc)
- Deployment of frontend with CloudFront, HTTPS, etc.

Monorepo . .
cdk deploy Commit/ PR Merge - Integration tests as part of build
i ‘T‘ ___________________________________________________________ 1,
'ClICD !
1 D— :
' [a= goo §
1 0O— |
! AWS CodeBuild :
| CICD Stack cicp |
l |
: Detect :
! Changed pipelines per service. can deploy to any env !
! Services :
1
l |
1 1
Deploy [services !
| [————eploy services I l |
l Y I
1 -t A 1
! oo ! @
: Pipeline Artifacts : m
1 I
! Orchestrator : STAGING
: Pipeline Service Pipeline !
; ———— — (T ] ;
: Run Service | :
1 Pipelines: t— +— — — — — Install :
1 .
1 Staging | Dependencies 1
' - N
1
: * * 1
1
| | M odDn
! Run E2E !
: Tests | | Unit Tests | PRODUCTION
1 1
I
: * | * 1
1 1
1 1
: Package for :
! Approve? | Target Env :
1
1 I
. . I
| | Service Artifacts ¥ ,
1 Yes :
: . | Deploy to |
! Run Service Target Env :
: Pipelines: |— t— — — —— — !
1 Production 1
1 1
1 1
1 1
1 1
1 1
1 1




Observability



Structured Logs
npm install pino —-save

const pino = require('pino’')
const 1log = pino({ name: 'pino-logging-example' })

log.info({ a: 1, b: 2 }, 'Hello world')
const err = new Error('Something failed')
log.error({ err })

{"level":30,"time" :1575753091452, "pid" :88157, "hostname" :"
eoinmac", "name":"pino-logging-
example","a":1,"b":2,"msg" :"Hello world","v":1}

@eoins



Centralized Logs

aws Services v

S

Resource Groups v % Q

Ireland ~ Support v

CloudWatch Query help (7' Learn more

Dashboarc <

/aws/lambda/checklist-serv... /aws/lambda/checklist-serv...

(+13) ~

15m 30m 1h 6h 12h 1d custom ~ Commands
Alarms fields

fields @timestamp, @message
| sort @timestamp desc

| filter name='checklist-service' and result.@.name like /Kick-off/ stats
| limit 20

filter

sort

Billing - limit
Run query Actions v Sample queries v Have feedback? Email us.

Logs parse

Log groups Discovered fields

Q

L e
H Insights ogs Visualization

Metrics

@ingestionTime
@logStream
@message

Events

Rules

Event Buses
ServicelLens

Service Map

Traces
Synthetics

Canaries
Thresholds

Contributor |

Settings (&g

: @timestamp

2019-12-14T14:27:11.071+00:00

@ingestionTime
@log
@logStream
@message

@timestamp
hostname
level

msg

name

pid

result.@.createdAt

0

: @message
{"level":30,"time":1576333631071, "pid":8, "hostname" : "

1576333635051

835483165098: /aws/lambda/checklist-service-stg-list

2019/12/14/[$LATEST]e7b680a41cc846debd4f54ee959548ed

{"level":30,"time":1576333631071, "pid":8, "hostname": "169.254.226.

1576333631071
169.254.226.237
30

Result received
checklist-service
8

1576182234061

@timestamp
@requestId
@type

hostname

level

msg

name

pid

time

v
@billedDuration
@duration
@maxMemoryUsed
@memorySize
result.entId
result.title
@xrayTraceld
@xraySegmentId
result.createdAt




Service Metrics

Service Example Metrics

Lambda Invocations, Errors, IteratorAge, ConcurrentExecutions
DynamoDB ReturnedBytes, ConsumedWriteCapacityUnits

Lex MissedUtteranceCount,RuntimePollyErrors

Textract UserErrorCount, ResponseTime

Rekognition | DetectedFaceCount,DetectedLabelCount

Polly RequestCharacters, Responselatency

@eoins



Application and Service Metrics

async function addEntry({ userld, listId, title, value }) {

const entId = Uuid.v4()

const params = {
TableName: tableName,
Key: { userIld, listId },
UpdateExpression: 'SET #ent.#entld = :entry’,
ExpressionAttributeNames: { '#ent': 'entries', '#entId': entId },
ExpressionAttributeValues: { ':entry': { title, value } },
ReturnValues: 'ALL_NEW'

}

const { Attributes: { entries } } = await dynamoDocClient().update(params).promise()
const metrics = createMetricsLogger()

metrics.putMetric('NumEntries', Object.keys(entries).length, Unit.Count)
metrics.putMetric('EntryWords', title.trim().split(/s/).length, Unit.Count)

await metrics.flush()

return { entId, title, value }

@eoins



Application and Service Metrics

Resource Groups v % Q m Ireland ~  Support ~

Services v

Untitled graph

8.42 1.7/8

@ NumEntries Average EntryWords Average

All metrics Graphed metrics (6)

Math expression v @ Dynamic labels v

Label

NumEntries Average
EntryWords Average
NumEntries Maximum
EntryWords Maximum
NumEntries p95

EntryWords p95

@ Feedback (@ English (US)

ith 3h 12h 1d 3d 1w custom ~ Number Actions v e (7]

Apply time range Q

19 8 16.6 4.7/1

@ NumEntries Maximum @ EntryWords Maximum @ NumeEntries p95 @ EntryWords p95

Graph options

Statistic: (multiple) v Period: 5 Minutes v Remove all

Details Statistic Period

aws-embedded-metrics * NumEntries * ServiceName: checklist-s... Average 5 Minutes
aws-embedded-metrics * EntryWords * ServiceName: checklist-s... Average 5 Minutes
aws-embedded-metrics * NumEntries * ServiceName: checklist-s... Maximum 5 Minutes
aws-embedded-metrics * EntryWords * ServiceName: checklist-s... Maximum 5 Minutes
aws-embedded-metrics * NumEntries * ServiceName: checklist-s... p95 5 Minutes

aws-embedded-metrics * EntryWords * ServiceName: checklist-s... p95 5 Minutes

© 2008 - 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy Terms of Use



Resource Groups ~ D o - Sepor -

/aws/lambda/checklist-serv... v 2019-12-14 (14:18:12) - 2019-12-14 (14:51:21) ~

> filter @type = "REPORT"
| stats max(@memorySize / 1024 / 1024) as provisonedMemMB,

min(@maxMemoryUsed / 1024 / 1024) as minMemMB,
avg(@maxMemoryUsed / 1024 / 1024) as avgMemMB,
max(@maxMemoryUsed / 1024 / 1024) as maxMemMB,
provisonedMemMB - maxMemMB as overProvisionedMB,
pct(@duration, 95) as pc95Durations,
pct(@duration, 98) as pc98Durations,
pct(@duration, 99.9) as pc99_9DurationS

Actions v Sample queries v Have feedback? Email us.

Logs Visualization

e 1T

02:20 02:25 02:30 02:35 02:40 02:45 02:50
2,482 records matched | 9,963 records (1.4 MB) scanned in 3.9s @ 2,557 records/s (379.2 kB/s)

# : provisonedMem.. : minMemMB : avgMemMB : maxMemMB : overProvisioned.. : pc95DurationS: pc98DurationS: pc99_9DurationS :
1 976.5625 140.1901 156.6231 165.9393 810.6232 96.9033 128.5827 575.2606



Distributed Tracing

Checklist Service User Service

P> P>
B--E B 83

API Lambda DynamoDB Cognito | Gateway + Lambda @
Gateway User Pool AWS_|AM

Simple Email

? Service (SES)
o)

Welcome Email
Service Service

3 Y
SQS Queue Lambda

Amazon AWS
EventBridge Lambda

Event Bus




Distributed Tracing

tracing:
apiGateway: true
lambda: true

const awsXray = require('aws-xray-sdk')
const AWS = awsXray.captureAWS(require('aws-sdk'))

@eoins



aws Services v  Resource Groups v % JA\

= v Ireland v Support ¥

CloudwWatch Service Map

Service map 5m 15m 30m 1h 3h 6h  custom [ |Mapvlew I List view

Q | ® | ® | Q | Requests mode V¥

v Map legend

checklis: tg-delete

Lpfbda Container B Fault (5xx) [l Error (4xx)

Il Throttle /A Current alarms

AWS service: m

AWS resource: (Resource name)

checklist-s...stg-addEntry

Unknown node: Node name

Lambda Container

I Size is requests

() » o

checklist-s...del,

Lambda C

api.stg.slic...om/!
ApiGateway Stage 3

t-service-stg-get

checklist
Lambda Ci

bda Function

3
t-s...deleteEntry
Lambda Functicn
) —
¥ Ny
—\ checklist-...stg-update
bda Container e Lambda Function
©
\
checklist-s...updateEntry checklist-_-stg-create checkl q-listEn
Lambda Co Lambda Container Lambda Function -
checkli ce-stglist) ch pdateEntry
Lambda Container P—— Lambda Function
R—

checklis

Lambda Function




aws
~—

CloudWatch

Services v

Service Map

y Service map

Q

()

Resource Groups v %

checklist-service-stg-deleteEntry

api.stg.slic...om/checklist

ApiGateway Stage

» checklist-service-stg-deleteEntry

Lambda

@ Feedback

Q@ English (US)

checklist-s...deleteEntry

Lambda Fontainer
checklist-service-stg-deleteEntry

B 50% Errors (4xx)

3.035 1.0/min 0.0/min

Q' Ireland v Support v

2019-12-15 (17:42:00) > 2019-12-15 (17:44:00) ‘ Map view ‘ List view

Back to full map H ® ‘ ® ‘ Q ‘ Latency mode v

v Map legend

- Il Fault (5x¢) [l Error (4xx)

. Throttle A Current alarms

checklist-s...deleteEntry
Lambda Function AWS service: m
AWS resource: Resource name
Unknown node: Node name

Size is latency

View logs [4 ‘ ’ View traces ‘ ‘ View dashboard

© 2008 - 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy  Terms of Use




Peter Elger
Edin Shanaghy

‘.. MANNING

Chapter 6!

Monitoring vs. Observability

Monitoring typically referes to the use of tools to inspect known metrics of a system.
Monitoring should allow you to detect when problems happen and to infer some
knowledge of the system. If a system does not emit the right outputs, the effect of
monitoring is limited.

Observability ¥, a term from control theory, is the property of a system that allows
you to understand what’s gomng on inside by looking at its outputs. The goal of
observability is to be able to understand any given problem by inspecting its outputs.
For example, if we have to change a system and redeploy it in order to understand
what’s going on, the system is lacking in observability.

One way to think about the difference between these two terms, is that monitoring
allows you to detect when known problems occur and observability aims to provide
understanding when unknown problems occur.

As an example, let us suppose that your application has a well-tested, working sign-up
feature. One day, users complain that they are unable to complete sign-ups. By looking
at a visual map of the system, you determine that errors in the signup module result
from failures in sending signup confirmation emails. By looking further into the errors
in the email service, you notice that an email sending limit has been reached.
preventing the emails from being sent. The visual map showing dependencies between
modules and errors led you to the email service logs giving the root cause details

These observability features helped to resolve an unexpected problem.

There are many approaches to achieving observability. For our checklist application, we are

going to look at what we want to observe and how to achieve that using AWS-managed

services. We will look at four practical areas of observability:

. Structured, centralized logging
Service and application metrics
Alarms to alert us when abnormal or erroneous conditions occur

Traces to give us visibility into the flow of messages throughout the system

@eoins



Serverless is about productivity and agility
Don’t seek perfection
Move out of your comfort zone enough

Check out SLIC Starter to avoid some Serverless pitfalls!

@eoins



Thank You &®



