
Designing
stack agnostic, modern, secure

architectures

Eugene Pilyankevich,
Chief Technical Officer, Cossack Labs

#whoami / Speaker intro

• Infosec since mid-90s.

• Designed, supervised development of banking data processing,
risk management DSS, cryptographic libraries, high-load services.

• Protected some state secrets, banking data, critical
infrastructures, patient records, transactions and payment data.

• CTO, co-founder at Cossack Labs - data security solutions
provider (www.cossacklabs.com)

• Life-long interest in how big systems fail and stand against failure.

http://www.cossacklabs.com/

Designing
stack agnostic, modern, secure

architectures

stack agnostic, modern, secure

Sounds a bit like CAP theorem, isn’t it?

1. Stack agnostic = Architecture that is not limited with certain
implementations or availability of certain types of
infrastructure;

Sounds a bit like CAP theorem, isn’t it?

1. Stack agnostic = Architecture that is not limited with certain
implementations or availability of certain types of
infrastructure;

2. Modern = Architecture that enables modern design
approaches and addresses modern, relevant risks and threat
models;

Sounds a bit like CAP theorem, isn’t it?

1. Stack agnostic = Architecture that is not limited with certain
implementations or availability of certain types of
infrastructure;

2. Modern = Architecture that enables modern design
approaches and addresses modern, relevant risks and threat
models;

3. Secure = Resilient against chosen risks;

Sounds a bit like CAP theorem, isn’t it?

1. Stack agnostic
2. Modern
3. Secure

SA + M + S

How do we get to SA + M + S ?

Step 1. Understand goals of security architecture, why do we
need it, what is the value and the benefit?

Step 2. Understand necessary design and implementation steps
in practical context.

Step 3. Understand and overcome limitations during both
design and implementation.

How do we get to SA + M + S ?

Part 1. Why do we need security architectures? Why can’t we
just build ISMS or just address OWASP Top 10?

Part 2. Building blocks of security architecture. Risk
management, attack surface, balancing tradeoffs.

Part 3. Typical approaches to resolving conflicts and
overcoming limitations while preserving SA, M & S.

Why we need security architecture?

WHY?

WHY?

Let’s start with a story.

Not an easy target

ISO 27000

A+ rating in banking security compliance

Annual audits and frequent pentests

… in 2008 we pretty much ahead of the game, we thought.

Perfect user fraud prevention solution.

• Cookie / Session / IP binding
• Concurrent session matching
• Concurrent query analysis
• Rate limiting
• Terms of service enforcement
• Browser fingerprinting
• Complex JS wizardry

Defenders Attackers

Yeah, right, let’s see what they
came up with now.

Perfect user fraud prevention solution.

• Cookie / Session / IP binding
• Concurrent session matching
• Concurrent query analysis
• Rate limiting
• Terms of service enforcement
• Browser fingerprinting
• Complex JS wizardry
• Charge customers per request
• Void abuser’s contracts

Defenders Attackers

😟

Perfect user fraud prevention solution.

• Cookie / Session / IP binding
• Concurrent session matching
• Concurrent query analysis
• Rate limiting
• Terms of service enforcement
• Browser fingerprinting
• Complex JS wizardry
• Charge customers per request
• Void abuser’s contracts

Defenders Attackers

Account misuse and fraud drop
below 5% within 180 days.

Perfect user fraud prevention solution.

• Cookie / Session / IP binding
• Concurrent session matching
• Concurrent query analysis
• Rate limiting
• Terms of service enforcement
• Browser fingerprinting
• Complex JS wizardry
• Charge customers per request
• Void abuser’s contracts

Defenders

”Prevent it with more code” –
engineer’s decision.

👈

Perfect user fraud prevention solution.

• Cookie / Session / IP binding
• Concurrent session matching
• Concurrent query analysis
• Rate limiting
• Terms of service enforcement
• Browser fingerprinting
• Complex JS wizardry
• Charge customers per request
• Void abuser’s contracts

Defenders

”Prevent it with more code” –
engineer’s decision.

👈

”Prevent it closer to the
risks” – manager’s decision

👈

Now prevent injections on public front

• Input sanitization: front-end
• Input sanitization: back-end
• mod.security config with 2K LOC

of custom rules.

Defenders Attackers

The front-end is written in
PHP, yeah right.

Now prevent injections on public front

• Input sanitization: front-end
• Input sanitization: back-end
• mod.security config with 2K LOC

of custom rules.
• Prepared statements.
• Materialized views.
• Domain model, 4-layer validation.

Defenders Attackers

Why it stopped failing in new
funny ways now?

Now prevent injections on public front

• Input sanitization: front-end
• Input sanitization: back-end
• mod.security config with 2K LOC

of custom rules.
• Prepared statements.
• Materialized views.
• Domain model, 4-layer validation.

Defenders

Security engineer’s decision.👈

Now prevent injections on public front

• Input sanitization: front-end
• Input sanitization: back-end
• mod.security config with 2K LOC

of custom rules.
• Prepared statements.
• Materialized views.
• Domain model, 4-layer validation.

Defenders

Security engineer’s decisions.👈

System architect’s decisions.👈

• Equifax.
• Heartland Payment Systems.
• JP Morgan.
• RSA Security.
• Operation Aurora victims:

Google, Juniper, other non-
confirmed high-profile
targets.

Why do large companies struggle with this?

• “Big companies are hard, big infrastructures are harder to
enforce good policies in”

• “Unexpected attack vector under novel threat model
accompanied with forces we were not yet prepared to
meet”

Why do large companies struggle with this?

• “Big companies are hard, big infrastructures are harder to
enforce good policies in”

• “Unexpected attack vector under novel threat model
accompanied with forces we were not yet prepared to
meet”

• On a long enough timeline, the survival rate for everyone
drops to zero

Why do large companies struggle with this?

• “Big companies are hard, big infrastructures are harder to
enforce good policies in”

• “Unexpected attack vector under novel threat model
accompanied with forces we were not yet prepared to
meet”

• On a long enough timeline, the survival rate for everyone
drops to zero

• ¯_(ツ)_/¯

Why do large companies struggle with this?

WHY?
1/5

Humans are unpredictable

Technology is broken

Poor design decisions

Humans are unpredictable

Technology is broken

Poor design decisions

WHY?
2/5

”How to get this security goal done
and that security concern eliminated?”

Poor design decisions

WHY?
3/5

Has negative business value*
Is hard to grok*
Is confusing and contradictory*

Security…

Has negative business value*
Is hard to grok*
Is confusing and contradictory*

Security…

Unless you’re employed in the infosec industry, where it gets even worse.

WHY?
4/5

You never know if something is secure or not

You never know if something is secure or not
… until it’s broken.

You never know if something is secure or not
… until it’s broken.

Then it’s definitely not secure.

Known Known
Known Unknown
Unknown Known
Unknown Unknown

4 types of knowing

Known Known
Known Unknown
Unknown Known
Unknown Unknown

4 types of knowing

4 types of knowing in security

Confusion
Doubt
Fear
Risk aversion

WHY?
5/5

In absence of clear mental model people make poor decisions
about risky and complex systems because risk brings affect &
bias.

Thinking about 100 things at the same time is quite frustrating.

In absence of well-communicated design principles and
acceptance criteria mind is prone to emotional affect.

Ability to think systems and ability to think risk is
quite domain-specific if you’re not conscious about it.

People make more mistakes
about risky things under
pressure in absence of simple
guiding principle.

Remember story I started with?

Manager’s decisions.

Security engineer’s decisions.

Software engineer’s decisions.

System architect’s decisions.
🤔

Remember story I started with?

Manager’s decisions.

Security engineer’s decisions.

Software engineer’s decisions.

System architect’s decisions.

What is bad for us?

How to prevent that “bad”?

What my stack suggest to do?

What is the right systematic way?

Remember the giants?

https://cloud.google.com/beyondcorp/
#researchPapers

Google: revised the
AC architecture.

https://cloud.google.com/beyondcorp/

Security architecture 101:
Intro👉

1. Prevent damage to business

2. Manage risks cost-efficiently

We want understandable and implementable decision system

that allows us to:

Goals of security architecture?

Combination of security decisions.

What is security architecture?

Combination of security decisions, which

makes actual system’s risks manageable.

What is security architecture?

Combination of security decisions, which

makes actual system’s risks manageable in a

chosen manner, efficiently.

What is security architecture?

Combination of security decisions, which

makes actual system’s risks manageable in a

chosen manner, efficiently, while maintaining

all other quality attributes of a system on

acceptable level.

What is security architecture?

• Understand and manage the risks

• Understand and manage attack surface

• Balance tradeoffs

How to design the security architecture?

Before we do these three things,

security effort is just re-painting

this door in fancy colors.

Security architecture 101:
Intro
Understanding risks👉

Building secure architecture is similar to
building scalable and resilient architecture.

It’s the set of risks that is different, but the
approach is the same – you design against
the chosen valid risks for you.

https://ivychapel.ink/posts/two-types-of-engineering-for-resiliency/

NASA US Navy

You?

https://ivychapel.ink/posts/two-types-of-engineering-for-resiliency/

Risk should be:

Measured

Managed

Risk should be:

Measured

Managed

Quantitatively

Adequately

Appetite/governance

Assessment

Treatment

Acceptance

IdentificationMonitoring

Mitigation

Questions:
• What is more important to protect and how? Why?
• Should we spend more on this or on that?

Valuable approaches:
• OWASP RAF
• FAIR
• NIST RMF

Risk management

• COBIT 5
• OCTAVA

Risks ~
Problem probability

Probable damage

Remember:
One in a million is next Tuesday.

https://blogs.msdn.microsoft.com/larryosterman/2004/03/30/one-in-a-million-is-next-tuesday/

Security architecture 101:
Intro
Understanding risks
Understanding attack surface👉

Understanding attack surface

Your
sensitive

assetsBad people

👻

Bad people

👻

Understanding attack surface

Attack
surface

Attack Surface is every possible way
attacker can induce chosen type of loss to
your system.

Understanding attack surface

Instead of “protecting every system”,
you can to focus on protecting the attack
surface.

Attack surface is your friend

• Attackers look for assets.

• Defenders protect boxes.

Understanding attack surface

• Attackers look for assets.

• Defenders protect boxes.

Understanding attack surface

• Attackers think in graphs.

• Defenders think in lists.

• Attackers look for assets.

• Defenders protect boxes.

Understanding attack surface

• Attackers think in graphs.

• Defenders think in lists.

Not prioritized by risk L

Prioritized by damage L

Note: An unfair asymmetry

• To win against attacker, you need to ensure that every vector
on attack surface is protected.

• Attacker to win against you, needs to find one (in worst case
several) unprotected attack vectors.

• Assessing attack surface.
• Minimizing attack surface.
• Controlling attack surface.
• Monitoring attack surface.
• Drills.

Managing attack surface

Security architecture 101:
Intro
Understanding risks
Attack surface
Balancing tradeoffs👉

Risk impact Cost

Balancing tradeoffs

Risk impact
Cost
Usability

Balancing tradeoffs

Risk impact

Cost
Usability
Maintainability

Balancing tradeoffs

Risk impact

Cost
Usability
Maintainability
Flexibility

Balancing tradeoffs

• This is not A vs B relationship: security + usability.

Balancing tradeoffs

• This is not A vs B relationship: security + usability.
• Pick your battles – you can’t have all NFRs in a perfect shape.

Balancing tradeoffs

• This is not A vs B relationship: security + usability.
• Pick your battles – you can’t have all NFRs in a perfect shape.
• Seek solutions that have:

Both acceptable risk impact and acceptable baseline
qualities for all NFRs.

Balancing tradeoffs

Designing for security:
understanding and overcoming limitations

In theory, there is no
difference between
theory and practice.

In practice, there is.

Yogi Berra,
New York Yankees,

catcher, coach and manager

Attack surface is always too big.

Attack surface is always too big.

• Real attack surface is always just crazy big.
• Variety of technologies, tools and assets is crazy big.
• The only thing that is not crazy big?
• Staff and security budget.

Attack surface is always too big.

• Example: two power grid monitoring efforts.

Humongous limitations, mad scale, bad legacy.
… security?

Attack surface is always too big.

• Example: optimizing SIEM coverage.

Need more signals, got less eyes.
Review risk model and decrease the scope (for real).

Prioritize! You can’t fix everything.

Prioritize! You can’t fix everything.
Choose your battles.

Is it secure?
Trust levels

1. Ultimate “secure”.
2. Nothing is “provably secure”

in absolute terms.
3. Raising the bar, raising cost
4. Controlling attack flow.

Sometimes requirements
conflict with each other!

Conflicts arise when each problem / risk has
separate solution / control.

Conflicts disappear when solutions in system
address root causes of problems and risks.

https://ivychapel.ink/posts/on-avoiding-band-aid-security/

https://ivychapel.ink/posts/on-avoiding-band-aid-security/

• Example: optimizing SIEM coverage.

Data leakage through audit logs.

• Example: optimizing SIEM coverage.

Data leakage through audit logs.
PCI logging requirements vs GDPR requirements.

• Example: optimizing SIEM coverage.

Data leakage through audit logs.
PCI logging requirements vs GDPR requirements.
Logs are data as well.

• Example: optimizing SIEM coverage.

Data leakage through audit logs.
PCI logging requirements vs GDPR requirements.
Logs are data as well.
Should we protect them?

No requirements = infinite rabbit hole.

Things you don’t need (yet) to succeed

You don’t need most of security tools (yet).

You don’t need most of security tools (yet).

That’s just more attack surface.

You don’t need most of security tools (yet).

That’s just more attack surface.

And more complexity.

Good architecture is both decision
framework and design guide. It not
only addresses the risks, it reduces
complexity.

If you’re focused on the risks and
attack surface of sensitive assets,
technology and stack is rarely an
issue.

Example: IAM + SSO + Zero Trust on top of
legacy AD/LDAP system with a dozen of
applications you can’t mostly update.

Recap

Combination of security decisions, which

makes actual system’s risks manageable in a

chosen manner, efficiently, while maintaining

all other quality attributes of a system on

acceptable level.

What is security architecture?

Set of high-level decisions that simplify

security choices, yet drive it in the right

direction in coordinated way.

What is security architecture? TL;DR:

• Risk management:

• Attack surface management:

• Balance tradeoffs:

SA + M + S

M + S

SA + S

How to design a security architecture?

Design against risks

Choose your battles wisely

Remove conflicts

How to design a security architecture?

• Risk management:

• Attack surface management:

• Balance tradeoffs:

Business, tech decisions

Tech, architecture decisions

Architecture decisions

How to design a security architecture?

• Risk management:

• Attack surface management:

• Balance tradeoffs:

There are various directions for security

improvement:

• Improve risk management / risk posture.

• Add security controls and tools.

Security architecture enables systematic risk

treatment that is informed by both to make

implementation fit both engineering and

business FRs and NFRs.

Thank you!

cossacklabs.com / ivychapel.ink / 9gunpi

http://www.cossacklabs.com/
http://ivychapel.ink

