
How to Sleep Soundly at Night
While Using Open Source

Guy Bar Gil, Product Manager

The Equifax Breach

2

Staying SecureSmallComp’s M&A

1 2 3

Introduction Slide

• Two dogs + one cat

• In my free time I enjoy:

• Sports

• Reading

• Traveling

3

Guy Bar Gil, Product Manager

4

1
The Equifax Breach

• Consumer credit reporting agency

• Equifax collects and aggregates information

• 800M+ individual consumers

• 88M+ businesses

• Publicly traded (NYSE), 9.5K+ employees, $3.14B in revenues

(2016)

Apache Struts

• Open-source framework, for

creating Java web applications.

• CVE-2017-5638 allows remote code

execution through the web

applications.

The Equifax Breach – A Timeline

March 9th

• CVE-2017-5638 was

published.

• The Apache Software

Foundation released a

patch for the

vulnerability.

• Equifax administrators

were told to apply the

patch to any affected

systems.

March 10th

Hackers gained

access to Equifax’s

systems. March 15th

Equifax's IT

department ran a

series of scans to

identify unpatched

systems.

May 13th

Hackers begin

exfiltrating data. July 29th

Equifax renews their

expired public-key

certificate

September 7th

Equifax publicized
the breach

Incident Aftermath

145 million
People affected by the breach.

$3 billion
The amount Equifax spent upgrading its
security and resolving consumer claims

9

Act Fast
Exploits are public for everyone

Continuously Monitor
300 new vulnerabilities published every month

Get the Basics Right
Millions spent on security gear but it was poorly implemented

#1
#2

#3

What Can We Learn?

10

2
SmallComp’s M&A

SmallComp’s M&A

• SmallComp required to do an open-
source audit.

• Found a dependency licensed under
AGPL.

11

$4M Dollars in Escrow

12

• Terms of the escrow:

• Remove any trace of AGPL from the

software.

• 80% of customers must deploy the

updated software to production.

• Two year timeframe.

• Development/deployment-related

costs taken from the escrow.

13

Solving The Problem
Isn’t So Easy

Two main obstacles:

• Development + QA time is 1 year for 1 person.

• SmallComp’s customers are hospitals, where

solutions are often manually deployed and

technicians are required to train staff.

They Did It!

SmallComp was able to fulfill the terms of the escrow

after 1 year and 8 months!

14

15

Set Clear Policies
for the whole company in regards to licensing

Communicate
the company’s policies to developers

Enforce
make sure your policies are being enforced

#1

#2

#3

How Do We Avoid This Situation?

16

3
Staying Secure

Step 1:

Create Transparency

• Transparency is the baseline to everything

• Understand exactly what you’re using:

• Direct Dependencies

• Transitive Dependencies

• Source files

17

18

Lots of jars

?

19

Lots of jars, but lots more java beans

?

Step 2:
Detect Potential Issues

• Match your components to the most

comprehensive DB possible:

• Published CVEs

• Vulnerabilities published in security advisories

• Vulnerabilities detected by research teams

• Thorough license detection

20

Step 3: Prioritize

How would you prioritize your vulnerabilities?

21

Step 3: Prioritize

• Prioritize by:

• Business risk

• Exploitability

• Severity

• Availability of fixes

• Effectiveness

22

23

Vulnerabilities Prioritization

24

After testing 2,000 Java
applications, WhiteSource
found that 85% of all
detected vulnerabilities
were deemed ineffective.

Step 4:

Execution

Understand the best path to remediation

• Upgrade the component’s version?

• Change the component?

• Set up an external defense?

25

26

Create

Transparency
Detect Issues Prioritize Execute

1 2 3 4

Let’s Talk About
Implementation!

Step 1 : Creating Transparency

Identify the processes in your software development lifecycle (SDLC)

28

Step 2: Detect
• Where you want to implement security checks

• Where you can automate

29

Development

30

Build

31

Deploy

32

Maintain

33

New vulnerabilities are constantly

being published

34

Step 3: Prioritize

• Act on early -> Shifting left

• Avoid allowing vulnerable components

reach deployment

35

Detect Issues As Early As Possible

Step 4: Execution

Who’s responsibility is it?

• Security team:

• Setting policies

• Educating developers

• Development team:

• Execution

36

37

Developers need robust tools,
that fit into their workflows

38

Educate
On the basics of open-source security & compliance

Empower Teams
By providing them the right tools

Enable Success
By creating a shared mission

#1
#2

#3

Don’t Be That Guy

39

“

Q & A

Thank You!

41

For any questions, please contact me:

Guy.bar-gil@whitesourcesoftware.com

