
How Rust
views tradeoffs

Steve Klabnik • 03.04.2019

Overview

What is a tradeoff?

“Bending the Curve”

Design is about values

Case Studies
● BDFL vs Design By Committee

● Stability Without Stagnation

● Acceptable levels of complexity

● Green vs System threads

Thanks, Bryan!
“Platform as a Reflection of Values”

Node Summit 2017

What is a tradeoff?

What is a tradeoff?

What is a tradeoff?

What is a tradeoff?

Space vs time
You can make it fast, or you can make it small

Throughput vs Latency
Two different measurements, often at odds

Dynamic Types vs Static Types
Ruby, or Haskell?

“Bending the curve”

Bending the Curve

One of these things is not like the others:

● Space vs Time
● Throughput vs Latency
● Dynamic Types vs Static Types

Bending the Curve

One of these things is not like the others:

● Space vs Time
● Throughput vs Latency
● Dynamic Types vs Static Types

Bending the Curve

A trade-off (or tradeoff) is a situational decision that involves
diminishing or losing one quality, quantity or property of a set
or design in return for gains in other aspects. In simple terms,
a tradeoff is where one thing increases and another must
decrease. -Wikipedia

Bending the Curve

Space vs time
Sometimes, smaller is faster

Dynamic Types vs Static Types
Gradual typing, anyone? (Don’t say “unityped”...)

Throughput vs Latency
Not inherently against each other, though they often are

Bending the Curve

This That

Bending the Curve

This That

Bending the Curve

This That

Bending the Curve

This That

Bending the Curve

This That

Bending the Curve

This That

Something else

Bending the Curve

A trade-off (or tradeoff) is a situational decision that involves
diminishing or losing one quality, quantity or property of a set
or design in return for gains in other aspects. In simple terms,
a tradeoff is where one thing increases and another must
decrease. -Wikipedia

Bending the Curve

In game theory and economic theory, a zero-sum game is a
mathematical representation of a situation in which each
participant's gain or loss of utility is exactly balanced by the
losses or gains of the utility of the other participants. If the

total gains of the participants are added up and the total
losses are subtracted, they will sum to zero. - Wikipedia

Bending the Curve

A win–win game is game theory which is designed in a way
that all participants can profit from the game in one way or
the other. In conflict resolution, a win–win strategy is a
collaborative strategy and conflict resolution process that

aims to accommodate all participants. - Wikipedia

Bending the Curve

When designing Rust, we ask ourselves:

Is this tradeoff fundamental, or through some
creativity, can we bend the curve into a

win-win situation?

The answer isn’t always yes, but it is yes surprisingly often.

Design is about Values

Design is about Values

What are your core values?
What things do you refuse to compromise on?

What are your secondary values?
What stuff would you like to have, but don’t need to have?

What do you not care about?
What things do others care about that you couldn’t care less for?

Design is about Values

Rust’s core values:
In a very particular order:

● Memory Safety
● Speed
● Productivity

Design is about Values

Rust’s secondary values:

● Ergonomics
● Compile times
● Correctness

Design is about Values

Rust doesn’t care about:

● Blazing a new trail in PLT
● Worse is Better
● Supporting certain kinds of old hardware

Design is about Values

Users have values too!
As a developer, you should do some introspection!

Use the tools that align with your values
Otherwise, you’re going to have a bad time

A mismatch causes problems
A lot of internet arguments are really about differing values

Design is about Values

So when you should use Rust?

Rust is ideal when you need a system that’s both reliable and
performant.

Sometimes, you don’t need those things! But sometimes, you do.

Sometimes, you don’t need those things at first, but then you do later.
We’ll leave the light on for you.

Case Study:
BDFL vs Design by Committee

BDFL vs Design by Committee

Benevolent Dictator For Life
Rules over projects with a velvet fist.

Design by Committee
“A camel is a horse designed by committee”

Can we do things differently?

BDFL vs Design by Committee

The Graydon years
Someone has to start this thing.

The Core Team years
More than one person should be in charge

The RFC Process + subteams
More than one team should be in charge

BDFL vs Design by Committee

This is a problem of scale
As things grow, you hit limits.

Only one team held us back
The Core Team was a bottleneck

New solutions come with new problems
More people and more distributed-ness means less cohesion

Case Study:
Stability Without Stagnation

Stability Without Stagnation

Stability
Things don’t change

Stagnation
Without change, growth is hard

Is this tradeoff fundamental?
We don’t believe so!

Stability Without Stagnation

https://blog.rust-lang.org/2014/10/30/Stability.html

https://blog.rust-lang.org/2014/10/30/Stability.html

Stability Without Stagnation

Stability
It's important to be clear about what we mean by stable. We don't
mean that Rust will stop evolving. We will release new versions of
Rust on a regular, frequent basis, and we hope that people will
upgrade just as regularly. But for that to happen, those upgrades need
to be painless.
To put it simply, our responsibility is to ensure that you never dread
upgrading Rust. If your code compiles on Rust stable 1.0, it should
compile with Rust stable 1.x with a minimum of hassle.

Stability Without Stagnation

The Plan
We will use a variation of the train model, first introduced in web browsers and
now widely used to provide stability without stagnation:

● New work lands directly in the master branch.
● Each day, the last successful build from master becomes the new nightly

release.
● Every six weeks, a beta branch is created from the current state of master,

and the previous beta is promoted to be the new stable release.
● In short, there are three release channels -- nightly, beta, and stable -- with

regular, frequent promotions from one channel to the next.

Stability Without Stagnation

The Plan
New features and new APIs will be flagged as unstable via feature gates and

stability attributes respectively. Unstable features and standard library APIs will

only be available on the nightly branch, and only if you explicitly "opt in" to the

instability.

The beta and stable releases, on the other hand, will only include features and APIs

deemed stable, which represents a commitment to avoid breaking code that uses

those features or APIs.

Stability Without Stagnation

This is a lot of work!
It’s worth it, though

We have a lot of bots to help
Without change, growth is hard

The tradeoff here is us vs users
We spend more time so our users don’t have to

Case Study:
Acceptable Levels of Complexity

Acceptable Complexity Level

Inherent complexity
Some kinds of complexity just exist

Incidental complexity
Some kinds of complexity are your fault

Different designs are differently complex
Fundamental choices can add or remove inherent complexity

Acceptable Complexity Level

Rust’s values mean large inherent complexity

7. It is easier to write an incorrect program than understand a correct
one.
8. A programming language is low level when its programs require
attention to the irrelevant.
23. To understand a program you must become both the machine and
the program.

Epigrams in Programming - Alan Perlis

Acceptable Complexity Level

Rust’s values mean large inherent complexity

Rust wants to help you write correct software. This means that a lot
of error handling gets exposed. It’s harder to handle more errors than
fewer errors, and it’s harder to handle Result<T, E> than ignore an
exception.

Things like the ? operator help reduce this, but it’s still present.

Acceptable Complexity Level

Rust’s values mean large inherent complexity

One way in which Rust provides safety and speed at the same time is
by using a strong static type system. Types are checked at compile
time, but free at runtime!

Strong static type systems have a lot of complexity.

Acceptable Complexity Level

Rust’s values mean large inherent complexity

Rust has a strong commitment to performance. This means that we
cannot rely on a garbage collector, and we have to expose, or at least
give access to, low-level details of the machine.

This inherently has more complexity than a language that doesn’t
prioritize these things.

Case Study:
Green vs System Threads

Green vs System threads

Two competing models
We won’t get too in the weeds here

System threads
An API offered by your operating system

Green threads
An API offered by your runtime; N system threads run M “green” ones

Green vs System threads

Two competing models
We won’t get too in the weeds here

System threads
An API offered by your operating system

Green threads
An API offered by your runtime; N system threads run M “green” ones

Green vs System threads

System Threads

● Requires calling into the
kernel

● Fixed stack size (8MB
default on x86_64 Linux)

Green Threads

● No system calls

● Much smaller stack size
(8kb default for a
goroutine)

Green vs System threads

Sometimes, values change over time
Rust was pre-1.0 for five years

Originally Rust had a runtime
This runtime provided green threads

Rust got lower-level over time
Were green threads still the right choice?

Green vs System threads

System Threads

● Shouldn’t a systems
language provide access to
the system API?

Green Threads

● Different stack means you
have to switch when calling
into C

● This creates overhead
unacceptable for a
performance-first systems
language

Green vs System threads

What about a unified API?
Could we bend the curve by having both?

libnative vs libgreen
Two implementations of one API; pick the one you want

The downsides of both and advantage of neither
Were green threads still the right choice?

Green vs System threads
Forced co-evolution. With today's design, the green and native threading models must
provide the same I/O API at all times. But there is functionality that is only appropriate or
efficient in one of the threading models.

Overhead. The current Rust model allows runtime mixtures of the green and native models.
Unfortunately, this flexibility has several downsides: Binary sizes, Task-local storage, Allocation
and dynamic dispatch.

Problematic I/O interactions. As the documentation for libgreen explains, only some I/O and
synchronization methods work seamlessly across native and green tasks.

Embedding Rust. When embedding Rust code into other contexts -- whether calling from C
code or embedding in high-level languages -- there is a fair amount of setup needed

Maintenance burden. Finally, libstd is made somewhat more complex by providing such a
flexible threading model

https://github.com/rust-lang/rfcs/blob/master/text/0230-remove-runtime.md

https://github.com/rust-lang/rfcs/blob/master/text/0230-remove-runtime.md

Green vs System threads

As values change, so do the answers
Neither side of a tradeoff is illegitimate

Take time to re-evaluate your values
Have your values changed since this decision was made?

In the end, this API was removed
Rust provides only system threads in its standard library

Green vs System threads

No runtime means bring your own!
Not everything has to be provided by the language

Need green threads? There are packages!
Rayon for CPU-bound tasks, Tokio for IO-bound tasks

There’s tradeoffs here too
Fragmentation is a real possibility; the community needs to pick a
winner and rally around it for this strategy to work well

Thanks! <3

1. Tradeoffs are inherent

2. Think outside the box

3. Rust shines when robustness

and speed are paramount

