
Streaming Log Analytics  
with Kafka
Kresten Krab Thorup, Humio CTO

Log Everything,
Answer Anything,
In Real-Time.

Why this talk?

• Humio is a Log Analytics system

• Designed to run “on-prem”

• High volume, real time responsiveness.

• We decided to delegate the ‘hard parts’ of distributed
systems to Kafka. This is a talk about our experiences.

Humio

Data Driven SecOps

30k PC’s

BRO network

6 AD’s

2k servers

CEP

Log Store

Alerts/dashboards

Incident Response

~1M/sec

20TB/day

Humio Ingest Data Flow

Agent API/
Ingest Digest Storage

• Send data • HTTP/TCP API
• Authenticate
• Field Extraction

• Streaming queries
• Write segment files

• Replication

State Machine

Event Store

Query
/error/i | count()

State Machine

count: 473

count: 243,565

Humio Query Flow

Browser API Digest Storage

• Start Query
• Poll Status

• Initiate Query
• Merge results
• Schedule polls

• Provide results for  
live data  
(materialized view)

• Provide results for  
historic data  
(ad-hoc query)

Real-time Processing Brute-Force Search

• “Materialized views” 
for dashboards/alerts.

• Processed when data 
is in-memory anyway.

• Fast response times  
for “known” queries.

• Shift CPU load to  
query time

• Data compression

• Allows ad-hoc queries

• Requires “Full stack”  
ownership 

Use Kafka for the ‘hard parts’
• Coordination

• Commit-log / ingest buffer

• Transient data

• No KSQL

Kafka 101
• Kafka is a reliable distributed log/queue system

• A Kafka queue consists of a number of partitions

• Messages within a partition are sequenced

• Partitions are replicated for durability

• Use ‘partition consumers’ to parallelise work

 topic
partition #1

partition #2

partition #3

consumer

consumer

producer

partition=hash(key)

Kafka 101

Coordination ‘global data’

•Zookeeper-like system in-process

•Hierarchical key/value store

•Make decisions locally/fast without crossing a
network boundary.

•Allows in-memory indexes of meta data.

Coordination ‘global data’

•Coordinated via single-partition Kafka queue

•Ops-based CRDT-style event sourcing

•Bootstrap from snapshot from any node

•Kafka config: low latency

Log Store Design

• Build minimal index and compress data

Store order of magnitude more events

• Fast “grep” for filtering events

Filtering and time/metadata selection  
reduces the problem space

Event Store

10GB (start-time, end-time, metadata)

10GB (start-time, end-time, metadata)

10GB (start-time, end-time, metadata)

10GB (start-time, end-time, metadata)

. . .

Event Store

1GB (start-time, end-time, metadata)

1GB (start-time, end-time, metadata)

1GB (start-time, end-time, metadata)

1GB (start-time, end-time, metadata)

. . .

compress

1 month x 30GB/day ingest
90GB data, <1MB index

1 month x 1TB/day ingest
4TB data, <1MB index

Query

1GB

1GB

1GB 1GB

1GB

1GB 1GB 1GB

1GB

1GB

time

#ds1, #web

#ds1, #app

#ds2, #web

datasource

Query

1GB

1GB

1GB 1GB

1GB

1GB 1GB 1GB

1GB

1GB

time

#ds1, #web

#ds1, #app

#ds2, #web

datasource

10GB

Humio Query Flow

Browser API Digest Storage

• Start Query
• Poll Status

• Schedule Query
• Merge results

• Provide results for  
live data  
(materialized view)

• Provide results for  
historic data  
(ad-hoc query)

Durability

• Don’t loose people’s data.

• Control and manage data life expectancy

• Store, Replicate, Archive, Multi-tier Data storage

Durability

Agent Ingest Digest Storage

• Send data • Authenticate
• Field Extraction

• Streaming queries
• Write segment files

• Replication
• Queries on ‘old data’

Kafka

Durability

Agent API/
Ingest Kafka

HTTP 200 response => Kafka ACK’ed the store

Durability

Kafka

Digest
WIP 

(buffer) Segment

File records last consumed  
sequence number from disk

QE

Retention must be long enough to deal with crash

Durability

Kafka

Digest
WIP 

(buffer) SegmentQEIngest Kafka

ingest latency
p99p50

 topic
partition #1

partition #2

partition #3

consumer

consumer

producer

partition=hash(key)

Hash?

?

Partitions falling behind…
• Reasons:

• Data volume

• Processing time for real-time processing

• Measure ingest latency

• Increase parallelism when running 10s behind

• Log scale (1, 2, 4, …) randomness added to key.

 topic
partition #1

partition #2

partition #3

Data Sources

…100.000 … 100.000

multiplexing

Data Model

Repository Data Source

• Storage limits
• User admin

• Time series identified by  
set of key-value ‘tags’

* Event

• Timestamp + 
Map[String,String]

*

#type=accesslog,#host=ops01Hash ()

High variability tags ‘auto grouping’

• Tags (hash key) may be chosen with large value domain

• User name

• IP-address

• This causes many datasources => growth in metadata,
resource issues.

High variability tags ‘auto grouping’

• Tags (hash key) may be chosen with large value domain

• User name

• IP-address

• Humio sees this and hashes tag value into a smaller
value domain before the Kafka partition hash.

High variability tags ‘auto grouping’

• For example, before Kafka ingest hash(“kresten”) 
 #user=kresten => #user=13

• Store the actual value ‘kresten’ in the event

• At query time, a search is then rewritten to search the
data source #user=13, and re-filter based on values.

Multiplexing in Kafka

• Ideally, we would just have 100.000 dynamic topics that
perform well and scales infinitely.

• In practice, you have to know your data, and control the
sharding. Default Kafka configs work for many
workloads, but for maximum utilisation you have to do
go beyond defaults.

Using Kafka in an on-prem Product

• Leverage the stability and fault tolerance of Kafka

• Large customers often have Kafka knowledge

• We provide kafka/zookeeper docker images

• Only real issue is Zookeper dependency

• Often runs out of disk space in small setups

Other Issues

• Observed GC pauses in the JVM

• Kafka and HTTP libraries compress data

• JNI/GC interactions with byte[] can block global GC.

• We replaced both with custom compression

• JLibGzip (gzip in pure Java)

• LZ4/JNI using DirectByteBuffer

Resetting Kafka/Zookeeper

• Kafka provides a ‘cluster id’ we can use as epoch

• All Kafka sequence numbers (offsets) are reset

• Recognise this situation, no replay beyond such a reset.

What about KSQL?

• Kafka now has KSQL which is in many ways similar to
the engine we built

• Humio moves computation to the data,

• KSQL moves the data to the computation

• We provide interactive end-user friendly experience

Final thoughts

• Many difficult problems go away by using Kafka.

• We’ve been happy with the decision to defer the ‘hard
parts’ of distributed systems to Kafka.

• Some day we may build our own persistent commit log,
but for how it is not worth the trouble.

Thanks for your time.
Kresten Krab Thorup
Humio CTO

Filter 1GB data

Filter 1GB data

Filter 1GB data

Filter 1GB data

Filter 1GB data

