
BRINGING THE
JAMSTACK TO
THE ENTERPRISE

JAMUND FERGUSON

➡ Been at PayPal for 5.5yrs
➡ Brought in during Java to Node transition
➡ Currently leading consumer web platform team
➡ Focused on improving developer experience
➡ Do a lot of training and talking about JavaScript 

 internally and externally

LACK OF STABILITY INCREDIBLY SLOW DEPLOY TIMES CLIENT-SIDE PERF

WE HAVE A LOT OF SERVERS

AND DATA CENTERS

AND AVAILABILITY ZONES

AND STABILITY CHECKS

DEPLOYS CAN TAKE HOURS

DEPLOYS CAN TAKE HOURS

DEPLOYS CAN TAKE HOURS

WHAT IF DOING THE RIGHT
THING IS TOO HARD?

WE NEED TO RE-THINK THE ARCHITECTURE

GOLANG MACHINE LEARNINGCLOUD FUNCTIONS

TECHNOLOGY ENVY

UI

Application 
Servers

Java JavaJava C++Backend 
Services

Node.jsJSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

Node.jsJSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

Node.jsJSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

Node.jsJSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

JSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

JSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

JSX REST API

ReactHTML CSS CDN

UI

Application 
Servers

Java JavaJava C++Backend 
Services

JSX REST API

ReactHTML CSS CDN

GRAPHQL

UI

Application 
Servers

Java JavaJava C++Backend 
Services

JSX

ReactHTML CSS CDN

GRAPHQL

PROXY

SHARED GRAPHQLFrontend 
Services

ReactHTMLCSS

Backend 
Services

CDN

C++Java JavaJava

HELLO JAMSTACK,
MY OLD FRIEND

JAVASCRIPT
MARKUP

JAMSTACK APIs

 APPLICATION
SERVER

DB

SERVICE

JAMSTACK

JS
HTMLHTML

JSHTML
JS

HTML

JSHTML

HTML

JS

JS
HTML

JS

HTML

JS

HTML

JS

HTML

JS

JAMSTACK

THEIR DEVICEGEOGRAPHICAL NEAR (CDN)CLOUD

KEEP CONTENT CLOSER TO
THE CUSTOMER

FEW MOVING PARTS

NO DATABASE NO APP SERVER NO PROGRAMMING 
LANGUAGE

GREAT TOOLING & DX

DEPLOY IN SECONDS REACT & GATSBY SINGLE STACK

JAMSTACK IS
GREAT FOR
STATIC SITES

YOU CAN ALSO
MAKE FULLY
INTERACTIVE
WEB APPS

 
STATIC APPS ARE FULLY
INTERACTIVE WEB APPS,
POWERED BY STATIC
ASSETS*

* and some APIs too

LOAD THE DYNAMIC BITS

LOAD THE STATIC PART <300MS

CDN /
EDGEBROWSER

300ms

TTFB IS SUPER FAST. MOST OF
PAGE READY TO GO RIGHT AWAY!

300ms 30ms 400ms500ms

CDN /
EDGE

LOAD 
BALANCER GRAPHQLBROWSER

SERVICES
OR

DATABASE

~1000MS

WAITING TIME IS LOWER THAN
SSR BECAUSE I’M ONLY DOING

API PROCESSING

CDN /
EDGE

LOAD 
BALANCER NODE.JSNGINXBROWSER

SERVICES
OR

DATABASE

SERVER-SIDE RENDERED JAVASCRIPT

300ms 30ms 800ms10ms 1000ms

2140MS

PRE-RENDERED HTML AT THE CDN 300MS

CDN /
EDGEBROWSER

300ms

PPME: PARTIALLY SERVER-RENDERED VERSION

3 SECONDS OF WHITE SCREEN

1000MS OF JS & IMAGES

TOTAL LOAD TIME (THROTTLED): ~4000MS

PPME: STATIC APP VERSION

INITIAL PAGE LOAD
IS UNDER 1S

1500MS PARSING JS &
WAITING ON CONTENT

500MS RECEIVE CONTENT

TOTAL LOAD TIME (THROTTLED): ~3000MS

ENTERPRISE JAMSTACK

WHEN BUILDING STATIC APPS
‣ Think files not routes

‣ Pre-render as much as possible (how frequently?)

‣ Load additional content with APIs

‣ Cache / optimize aggressively

PayPal.me Settings Page

- How much of this page can be static?

- Load it up with an API

- Optimize using SessionStorage 
by pre-loading the users basic 
settings at log-in

TO 
 

 300MS + 
 200MS = 

 
500MS

FROM 
 

 300MS + 
1200MS =  

 
1500MS

2

3

4

/PAYPALME/SETTINGS SETTINGS.HTML1

http://PayPall.me

My PayPal.me Profile

PAYPAL.ME/JAMUND JAMUND.HTML

PAYPAL.ME/* PROFILE.HTML

1

2 How much we we pre-render?

Make an API call for more data3

Optimizations:

• Cache user info / API request

• We can also load things like
the URL directly from memory

•

4

EVEN IN WORST CASE
SCENARIOS, WHERE MOST
OF THE PAGE IS DYNAMIC,
STATIC APPS ARE FAST

BRINGING IT TO THE ENTERPRISE

ADOPTION AND BUY-IN

Hold Workshops / Build Hype

WE DECIDED
TO BUILD A

PROTOTYPE
VERSION OF

PAYPAL.ME

BUILD OUT
TOOLING SO
THAT ANY TEAM
COULD MAKE A
STATIC APP

A TOOL TO
GENERATE OUR
STATIC ASSETS

A PLACE TO
HOST THEM

https://www.gatsbyjs.org

https://www.gatsbyjs.org

> gatsby new qcon2019

info Creating new site from git: https://github.com/gatsbyjs/gatsby-starter-default.git
Cloning into 'qcon2019'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 1077 (delta 0), reused 2 (delta 0), pack-reused 1072
Receiving objects: 100% (1077/1077), 1.93 MiB | 1.72 MiB/s, done.
Resolving deltas: 100% (610/610), done.
success Created starter directory layout
info Installing packages...
 ✔ cwebp pre-build test passed successfully
 ✔ mozjpeg pre-build test passed successfully
 ✔ pngquant pre-build test passed successfully

added 1884 packages from 1136 contributors in 53.286s

> gatsby develop

success open and validate gatsby-configs — 0.006 s
success load plugins — 0.144 s
success onPreInit — 0.797 s
success delete html and css files from previous builds — 0.004 s
success initialize cache — 0.006 s
success copy gatsby files — 0.074 s
success onPreBootstrap — 0.005 s
success source and transform nodes — 0.047 s
success building schema — 0.262 s
success update schema — 0.100 s  
Generating image thumbnails [==============================] 6/6 0.2 secs 100%
info bootstrap finished - 7.107 s
 
 DONE Compiled successfully in 3592ms  

You can now view qcon2019 in the browser.

 http://localhost:8000/

Pages Folder

src/pages/qcon.js

GATSBY IS MAGIC

{ PORTING AN EXISTING
REACT SITE TO GATSBY

ISN’T VERY HARD }

> gatsby build

success open and validate gatsby-configs — 0.063 s
success load plugins — 0.130 s
success onPreInit — 0.741 s
success onPreBootstrap — 0.004 s
success source and transform nodes — 0.035 s
success building schema — 0.211 s
success createPages — 0.000 s
success update schema — 0.096 s
success extract queries from components — 0.096 s
success run graphql queries — 0.046 s — 8/8 177.64 queries/second
success write out page data — 0.003 s
success write out redirect data — 0.001 s
success onPostBootstrap — 0.284 s
info bootstrap finished - 4.976 s
success Building production JavaScript and CSS bundles — 8.634 s
success Building static HTML for pages — 0.604 s — 5/5 22.57 pages/second
info Done building in 14.22 sec

> ls public

index.html
404.html  
0-9bd0c85834a3a93b1f79.js
app-04084b8a557f707b6868.js
pages-manifest-e4b2639aaf09a35adca0.js
component---src-pages-404-js-d2285ef859a157145c5f.js
component---src-pages-index-js-fb8583164602255204fc.js
component---src-pages-page-2-js-32e895d1268581b61c23.js
component—src-pages-qcon-js-7f23b1bc9d18fc3f2d1e.js
component---src-pages-404-js.fc0360e935268c0b4b8c.css
component---src-pages-index-js.fc0360e935268c0b4b8c.css
component---src-pages-page-2-js.fc0360e935268c0b4b8c.css
component---src-pages-qcon-js.fc0360e935268c0b4b8c.css
chunk-map.json
manifest.webmanifest
page-2/
icons/
404/

LET’S BUILD THE JAMSTACK DX
INSIDE OUR OWN PRIVATE CLOUD

{
 "hosting": {
 "redirects": [{
 "source": "/beta",
 "destination": "/",
 "type": 301
 }],
 "rewrites": [{
 "source": "/profiles/*",
 "destination": "/profiles.html"
 }],
 "headers": [{
 "source": “**/*.js”,
 "headers": [{
 "key": “Access-Control-Allow-Origin“,
 "value": “*"
 }]
 }]
 }
}

EASILY APPLY
CORS HEADERS

REDIRECTS FOR
OUTDATED URLS

REWRITES FOR
WILDCARD URLS

GRAPHQL

Java JavaJava ASF

CDN GatsbyHTMLCSS

Backend 
Services

Frontend 
Services

STATIC APP SERVER

GRAPHQL

Java JavaJava ASF

Frontend 
Services

GatsbyHTMLCSS

Backend 
Services

Application 
Servers

PRODUCTION STAGING

EACH APP SERVER CONTAINS ITS OWN ASSETS

▸ Developer can completely ignore app server

▸ “1-minute deploy” to production

▸ Infra team on the hook now if anything stops working

▸ Add static app capabilities to our current build & deploy pipeline

▸ Allow app devs to mostly focus on UI server piece

▸ “1-minute deploy” to staging

PHASE 1: STATIC APP SUPPORT

PHASE 2: STATIC APPS AS A SERVICE

STATIC APPS ADOPTION PLAN

STATIC
APP

SERVICE

APP MAPPINGS  
CLOUD STORAGE

ALL TEAMS SHARE A
SINGLE SERVICE TO
SERVE THEIR APPS

/paypalme

/summary

/home

STATIC
APP

SERVICE

APP MAPPINGS  
CLOUD STORAGE

1. Generates Files 2. Push them to Cloud

3. Update Mappings

ROLLBACK

/paypalme

/summary

/home

RETRACING OUR STEPS

WHEN DOING THE RIGHT
THING IS POSSIBLE, BUT
NOT EASY, CONSIDER
CHANGING YOUR
ARCHITECTURE

JAMSTACK PROVIDES A
STABLE & PERFORMANT
ARCHITECTURE BY
DEFAULT

INSTEAD OF SIMPLE 
STATIC SITES WE ARE
CHOOSING TO TO BUILD
FULLY INTERACTIVE 
STATIC APPS

THESE APPS ARE VERY
STABLE AND VERY FAST
AND THE DEVELOPER
EXPERIENCE IS AWESOME

EVEN AFTER HAVING TO
BUILD A LOT OF OUR OWN
INFRASTRUCTURE WE
THINK ITS GOING TO BE
WORTH THE INVESTMENT

OUR DEVELOPERS ARE
GOING TO LOVE IT 
AND WE THINK 
YOU WILL TOO

JAMSTACK
IS GOING TO
BE HUGE

THANK YOU

