A Journey 1nto
Intel’s SGX

Jessie Frazelle - QCon London

A bit about Enclaves

Intel SGX Explained

Victor Costan and Srinivas Devadas
victor@costan.us, devadas @mit.edu
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Intel’s Software Guard Extensions (SGX) is a set of
extensions to the Intel architecture that aims to pro-
vide integrity and confidentiality guarantees to security-
sensitive computation performed on a computer where
all the privileged software (kernel, hypervisor, etc) is
potentially malicious.

This paper analyzes Intel SGX, based on the 3 pa-
pers [14, 79, 139] that introduced it, on the Intel Software
Developer’s Manual [101] (which supersedes the SGX
manuals [95, 99]), on an ISCA 2015 tutorial [103], and
on two patents [110, 138]. We use the papers, reference
manuals, and tutorial as primary data sources, and only
draw on the patents to fill in missing information.

This paper does not reflect the information available
in two papers [74, 109] that were published after the first
version of this paper.

This paper’s contributions are a summary of the
Intel-specific architectural and micro-architectural details
needed to understand SGX, a detailed and structured pre-

contatinn nf the niithlicly availahle infarmation oan SCOYY

! Data Owner’s

i Computer i :
' i | Untrusted Software ‘
Computation |} |Container
Dispatcher : :
. Setup H
Computation !

! Private Code

Private Data

<
()
=
=
9]
Q0
=
o
S
m
233
0l 9
cg 2
336
Q

Khana I Manages
Trusts Authors ge:
g -
Data Owner Software Infrastructure
Provider Owner

Figure 1: Secure remote computation. A user relies on a remote
computer, owned by an untrusted party, to perform some computation
on her data. The user has some assurance of the computation’s
integrity and confidentiality.

uploads the desired computation and data into the secure

Data Owner’s

' Computer
E : | Untrusted Software |
| |Computation |: | Container i
| Dispatcher ! | |
E ; Setup ! :
| Computation ! i
i etu ! i T !
! Setup i _ : Private Code |
i 1 Receive ! !
i|| Verification ||4+— Encrypted —+ : |
! enficato ! Reglﬂts : Private Data !
E L B |

Owns l ?

Trusts Authors Manages

Trusts
Data Owner Software Infrastructure
Provider Owner

Figure 1: Secure remote computation. A user relies on a remote
computer, owned by an untrusted party, to perform some computation
on her data. The user has some assurance of the computation’s
integrity and confidentiality.

| plnxeskonk et okt ok i oo i, ST okl bkt et ool i 1
|
|
|

Data Owner’s

1 Computer i |
; ! : Trusted Hardware :
i | il| Untrusted Software |
| Computation Secure Container |
' | Dispatcher : : ¢
! : Setup | Public Loader i
i Set i Computation i :
| u : | . i
! P ! . ! Private Code !
: i Receive i \
, ificati +— Encrypted — p i
| Nerileation | Rergﬁts ' Private Data !
s b — s
"""" I T Builds
[
Owns
Trusts Authors Manages
Trusts { ; { l
Data Owner Software Infrastructure Manufacturer
Provider Owner T

Trusts

Figure 2: Trusted computing. The user trusts the manufacturer of a
piece of hardware in the remote computer, and entrusts her data to a
secure container hosted by the secure hardware.

Sofure frivilege Levedg

SMM

_ BloS

YMX
ROOT

VMY
Non-Root

Pingl

Rupervisow

Ping |

Eing 2

Ling?

—

b’m9¢

Eing |

0S Lernel

Ring

Move Pvivilcged

VHINIS mvr?“"s“k

2ing %

—]

Applicakion.

Sy Seere Enclave,

Lass Privilegwl

How this all started

Originally meant for DRM

N
fusenlx

COMPUTING SYSTEMS
ASSOCIATION

Shielding Applications from an
Untrusted Cloud with Haven

Andrew Baumann, Marcus Peinado, and Galen Hunt, Microsoft Research

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/baumann

This paper is included in the Proceedings of the
114k LICERIIY Crrvam v /e o1 1m0 7 b

é’USEHIX'

COMPUTING SYSTEMS
ASSOCIATION

SCONE: Secure Linux Containers with Intel SGX

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, and Andre Martin,
Technische Universitdt Dresden; Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’Keeffe, and Mark L Stillwell, Imperial College London; David Goltzsche,
Technische Universitdt Braunschweig; Dave Eyers, University of Otago; Rudiger Kapitza,
Technische Universitdt Braunschweig; Peter Pietzuch, Imperial College London;
Christof Fetzer, Technische Universitdt Dresden

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov

1

Keep Code.Smad\.

Koep thne tvuseed Compwam% paSe

SMALL
& Wit Sew dupendencies
€0 1¢§5en Ahe v{SC 0F One having o

VULNERABILITY

t's kinda like ...
5 U YEing: 1§
IN THE SANDBOY

then theve

1C NO SANDBOY

PorSopmanncy,

Enclave Uy tad
MUST
COPY) umORY-lmsedt aurguments.

4 LEMVE
the nplave

feFore A SYsTeM CALL

Memory prgss Lor” an
ENCLAVE

Ve, (. tihg,

ENCLIVE PAGe CACHE

AFTE2 CACHE MISS

Cachne \ine§ mge e

PeCRYPTED

when Sekeined Srom-

MEMoR Y-

Thueat Mode for Conkminer Purtimeg, To

B —
S —————————,

Tuest Model See SLNE

SCONE agsmes...
Mai'!ca.ckvf O /cm

?\?,\\I\LE&GD_"
cope |

. c,mtamlr |

ScoNE ThretM ode)
~ P0ES NOT COVER-

* 5(0(9 Chm\m,l
O&meKS ovep.

Libravy nsidy Tnsted. Conpuding B

App\icokion. Code
Librauw il

C Liopary
Libpagty- Of
Shigldbing- Lale-

L |
Hose 0§ |

— — =

ﬁ
£ |
)

Mina Maﬂ TV U\&keol Comgﬁcm%u Bage,

ndrusted, Sugeem Calls

Applioskion Code. |
Librawics

. . 5

C Liorazy |

Shitiding: Lagte |

1

Yose 0S 1

Further iterations on this

L] oscarlab / graphene ®Owatch~ 31 Y%star 216 | ¥Fork 92
<> Code () Issues 102 I’} Pull requests 78 [l Projects o =5l Wiki 1 Insights

Graphene / Graphene-SGX Library OS - a library OS for Linux multi-process applications, with Intel SGX support
https://github.com/oscarlab/graphene/...

linux compatibility virtualization SgX

D 439 commits ¥ 18 branches © 5 releases 42 21 contributors s LGPL-3.0

I —
Branch: master v New pull request Create new file Upload files = Find file
n' bigdata-memory and donporter Fix null test and write test issues about the stat parameter --- Latest commit 5d799d2 on Oct 18, 2018
s github [Docs] Simplify our PR template 27 days ago
B Jenkinsfiles [Jenkinsfiles] Optimize the dockerfile for Ubuntu 14 days ago
i} LibOS Fix null test and write test issues about the stat parameter 5 days ago
i Pal [Pal/Linux-SGX] Fix typo: externel -> external 7 days ago
8 Runtime Fix Bash shebangs compatibility 27 days ago
8 Scripts Fix Bash shebangs compatibility 27 days ago
i Tools Tools/gsce: Clean up and optimize the integration of docker container... 6 days ago

B .clang-format First cut at a .clang-format for the project 3 months ago

The weird thing about Launch Control

Attacks on SGX

b P 0

8t |

;;:"

RN
Oy

w U

’

¥ 4B
\ -h-n s

usenix N
' THE ADVANCED e,)
COMPUTING SYSTEMS = — .;

.:‘n

ASSOCIATION

FORESHADOW: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution

Jo Van Bulck, imec-DistriNet, KU Leuven; Marina Minkin, Technion; Ofir Weisse,
Daniel Genkin, and Baris Kasikci, University of Michigan; Frank Piessens, imec-DistriNet,
KU Leuven; Mark Silberstein, Technion; Thomas F. Wenisch, University of Michigan;
Yuval Yarom, University of Adelaide and Data61; Raoul Strackx, imec-DistriNet, KU Leuven

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

This paper is included in the Proceedings of the
T - :

Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient

Out-of-Order Execution
Revision 1.0 (August 14, 2018)

Ofir Weisse>, Jo Van Bulck!, Marina MinkinZ, Daniel Genkin3, Baris Kasikci?, Frank Piessens!,
Mark Silberstein?, Raoul Strackx!, Thomas F. Wenisch3, and Yuval Yarom®

Vimec-DistriNet, KU Leuven, *Technion, 3 University of Michigan, * University of Adelaide and
Data61

Abstract

In January 2018, we discovered the Foreshadow transient
execution attack (USENIX Security’18) targeting Intel
SGX technology. Intel’s subsequent investigation of our
attack uncovered two closely related variants, which we
collectively call Foreshadow-NG and which Intel refers
to as L1 Terminal Fault. Current analyses focus mostly
on mitigation strategies, providing only limited insight
into the attacks themselves and their consequences. The
aim of this report is to alleviate this situation by thor-
oughly analyzing Foreshadow-type attacks and their im-
plications in the light of the emerging transient execution
research area.

At a high level, whereas previous generation
Meltdown-type attacks are limited to reading privileged
supervisor data within the attacker’s virtual address

orining: Boanacharisnar R sttarbo:narmnicialsy T <dlem:

tion requires different computational tasks belonging to
separate security domains to be isolated from each other
and prevented from reading each other’s memory. In
modern computer architectures this is typically achieved
via hardware-backed virtual memory, where each pro-
cess has its own separate virtual address space. When
a process accesses some memory location in its virtual
address space, the hardware translates the location’s ad-
dress into the corresponding physical address. Beyond
the convenience of simulating a memory space much
larger then the system’s physical memory and the avoid-
ance of address collisions across virtual address spaces,
virtual memory serves as an effective security mecha-
nism. Specifically, because addresses used by a process
are always translated using the hardware-based transla-
tion mechanism, on a correctly functioning hardware, a
process cannot “name” physical addresses belonging to

P T R e Th W Al o et oy avis gess Wb e

08719v2 [cs.CR] 1 Mar 2017

Malware Guard Extension:

Using SGX to Conceal Cache Attacks
(Extended Version)

Michael Schwarz
Graz University of Technology
Email: michael.schwarz@iaik.tugraz.at

Clémentine Maurice
Graz University of Technology
Email: clementine.maurice @iaik.tugraz.at

Abstract—In modern computer systems, user processes are
isolated from each other by the operating system and the
hardware. Additionally, in a cloud scenario it is crucial that the
hypervisor isolates tenants from other tenants that are co-located
on the same physical machine. However, the hypervisor does not
protect tenants against the cloud provider and thus the supplied
operating system and hardware. Intel SGX provides a mechanism
that addresses this scenario. It aims at protecting user-level
software from attacks from other processes, the operating system,
and even physical attackers.

In this paper, we demonstrate fine-grained software-based
side-channel attacks from a malicious SGX enclave targeting
co-located enclaves. Our attack is the first malware running
on real SGX hardware, abusing SGX protection features to
conceal itself. Furthermore, we demonstrate our attack both
in a native environment and across multiple Docker containers.
We perform a Prime+Probe cache side-channel attack on a co-
located SGX enclave running an up-to-date RSA implementation

a8 oE L T SRR LS

SRR S T ORISR) S T AR)

Samuel Weiser
Graz University of Technology
Email: samuel.weiser@iaik.tugraz.at

Daniel Gruss
Graz University of Technology
Email: daniel.gruss @iaik.tugraz.at

Stefan Mangard
Graz University of Technology
Email: stefan.mangard @iaik.tugraz.at

attacks can recover cryptographic secrets, such as AES [2],
[3] and RSA [4] keys, across virtual machine boundaries.
Intel introduced a new hardware extension SGX (Software
Guard Extensions) [5] in their CPUs, starting with the Skylake
microarchitecture. SGX is an isolation mechanism, aiming at
protecting code and data from modification or disclosure even
if all privileged software is malicious [6]. This protection
uses special execution environments, so-called enclaves, which
work on memory areas that are isolated from the operating sys-
tem by the hardware. The memory area used by the enclaves
is encrypted to protect the application’s secrets from hardware
attackers. Typical use cases include password input, password
managers, and cryptographic operations. Intel recommends
storing cryptographic keys inside enclaves and claims that
side-channel attacks “are thwarted since the memory is pro-

Gt | WS o G A I S e S M A 2 S g

06986v2 [cs.CR] 20 Aug 2017

CacheZoom: How SGX Amplifies The Power of Cache Attacks

Ahmad Moghimi
Worcester Polytechnic Institute
amoghimi@wpi.edu

Gorka Irazoqui
Worcester Polytechnic Institute
girazoki@wpi.edu

Thomas Eisenbarth
Worcester Polytechnic Institute
teisenbarth@wpi.edu

Abstract

In modern computing environments, hardware resources
are commonly shared, and parallel computation is widely
used. Parallel tasks can cause privacy and security prob-
lems if proper isolation is not enforced. Intel proposed
SGX to create a trusted execution environment within the
processor. SGX relies on the hardware, and claims run-
time protection even if the OS and other software com-
ponents are malicious. However, SGX disregards side-
channel attacks. We introduce a powerful cache side-
channel attack that provides system adversaries a high
resolution channel. Our attack tool named CacheZoom
is able to virtually track all memory accesses of SGX en-
claves with high spatial and temporal precision. As proof
of concept, we demonstrate AES key recovery attacks
on commonly used implementations including those that
were believed to be resistant in previous scenarios. Our

the operating system (OS) provides security and privacy
services. In cloud computing, cloud providers and the
hypervisor also become part of the Trusted Computing
Base (TCB). Due to the high complexity and various at-
tack surfaces in modern computing systems, keeping an
entire system secure is usually unrealistic [19,33].

One way to reduce the TCB is to outsource security-
critical services to Secure Elements (SE), a separate
trusted hardware which usually undergoes rigorous au-
diting. Trusted Platform Modules (TPM), for example,
provide services such as cryptography, secure boot, seal-
ing data and attestation beyond the authority of the OS
[40]. However, SEs come with their own drawbacks:
they are static components and connected to the CPU
over an untrusted bus. Trusted Execution Environments
(TEE) are an alternative, which provide similar services
within the CPU. A TEE is an isolated environment to

sanisnsa Bt ot sl aire oz Agrnove g | isp NG bt QO e SO s mar e s thocoassarain: TS wi s adilin. suiing - il o' LSRN S Tl L5

02.03256v1 [cs.CR] 8 Feb 2019

Practical Enclave Malware with Intel SGX

Michael Schwarz, Samuel Weiser, Daniel Gruss

Graz University of Technology

Abstract. Modern CPU architectures offer strong isolation guarantees
towards user applications in the form of enclaves. For instance, Intel’s
threat model for SGX assumes fully trusted enclaves, yet there is an on-
going debate on whether this threat model is realistic. In particular, it
is unclear to what extent enclave malware could harm a system. In this
work, we practically demonstrate the first enclave malware which fully
and stealthily impersonates its host application. Together with poorly-
deployed application isolation on personal computers, such malware can
not only steal or encrypt documents for extortion, but also act on the
user’s behalf, e.g., sending phishing emails or mounting denial-of-service
attacks. Our SGX-ROP attack uses new TSX-based memory-disclosure
primitive and a write-anything-anywhere primitive to construct a code-
reuse attack from within an enclave which is then inadvertently exe-
cuted by the host application. With SGX-ROP, we bypass ASLR, stack
canaries, and address sanitizer. We demonstrate that instead of protect-
ing users from harm, SGX currently poses a security threat, facilitating
so-called super-malware with ready-to-hit exploits. With our results, we
seek to demystify the enclave malware threat and lay solid ground for
future research on and defense against enclave malware.

Keywords: Intel SGX, Trusted Execution Environments, Malware

