
Coccinelle:
10 Years of Automated Evolution in the Linux Kernel

Julia Lawall (Inria-Whisper team, Julia.Lawall@inria.fr)
March 2, 2020

1

Our focus: The Linux kernel

• Open source OS kernel, developed by Linus
Torvalds

• First released in 1991

• Version 1.0.0 released in 1994

• Today used in the top 500 supercomputers,
billions of smartphones (Android),
battleships, stock exchanges, …

2

Some history

First release in 1991.

• v1.0 in 1994: 121 KLOC, v2.0 in 1996: 500 KLOC

Recent evolution:

0
5

10
15
20

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

M
ill

io
n

LO
C

0
500

1,000
1,500
2,000

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

co
nt

rib
ut

or
s

1 10 50 100 500 1000 5000 10000
101
102
103
104

contributions

co
nt

rib
ut

or
s

3

Key challenge

As software grows, how to ensure its continued maintenance?

• Updating interfaces is easy.
Make functions and data structures:

– More efficient
– Easier to use correctly
– Better adapted to their usage context

• Updating the uses of interfaces gets harder as the software grows.
– More time consuming
– More error prone
– Need to communicate new coding strategies to all developers

Developers may hesitate to make needed changes.

4

Key challenge

As software grows, how to ensure its continued maintenance?

• Updating interfaces is easy.
Make functions and data structures:

– More efficient
– Easier to use correctly
– Better adapted to their usage context

• Updating the uses of interfaces gets harder as the software grows.
– More time consuming
– More error prone
– Need to communicate new coding strategies to all developers

Developers may hesitate to make needed changes.

4

Key challenge

As software grows, how to ensure its continued maintenance?

• Updating interfaces is easy.
Make functions and data structures:

– More efficient
– Easier to use correctly
– Better adapted to their usage context

• Updating the uses of interfaces gets harder as the software grows.
– More time consuming
– More error prone
– Need to communicate new coding strategies to all developers

Developers may hesitate to make needed changes.

4

Example change: init_timer → setup_timer

Initializing a timer requires:

• The callback function to run when the timer expires
• The data that should be passed to that callback function

Original initialization strategy (present in Linux v1.2.0, 1995):

5

Example change: init_timer → setup_timer

Initializing a timer requires:

• The callback function to run when the timer expires
• The data that should be passed to that callback function

Original initialization strategy (present in Linux v1.2.0):
init_timer(&ns_timer);
ns_timer.data = 0UL;
ns_timer.function = ns_poll;

6

Example change: init_timer → setup_timer

Replacement initialization strategy (introduced in Linux v2.6.15, Jan. 2006):
setup_timer(&ns_timer , ns_poll , 0UL);

Advantages:

• More concise
• More uniform
• More secure

7

Example change: init_timer → setup_timer

0

200

400

600

v2
.6

.1
5

Ja
n

20
06

v3
.0

Ju
l2

01
1

v4
.0

Ap
r2

01
5

v4
.1

4
No

v
20

17

Ca
ll

sit
es

init_timer setup_timer

8

Example bug: missing of_node_puts

Device node structures are reference counted:

• of_node_get to access the structure.
• of_node_put to let go of the structure.

Iterators, e.g., for_each_child_of_node, put one value and get another.

• Explicit put needed on break, return, goto out of the loop.
• Often forgotten.

9

Example bug: missing of_node_puts

0

50

100

150

200

250

v2
.6

.1
7

Ju
n

20
06

v3
.0

Ju
l2

01
1

v4
.0

Ap
r2

01
5

v5
.5

Ja
n

20
20

Ju
m

p
sit

es

missing present

10

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– Grep insufficient to find the problem.

• Changes may be widely scattered across the code base.
– Tedious and time-consuming to find all occurrences.

• Changes may come in many variants.
– Hard to anticipate; some variants may be overlooked.

• Developers are unaware of changes that affect their code.
– New code can be introduced using the old coding strategy.

11

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– Grep insufficient to find the problem.

• Changes may be widely scattered across the code base.
– Tedious and time-consuming to find all occurrences.

• Changes may come in many variants.
– Hard to anticipate; some variants may be overlooked.

• Developers are unaware of changes that affect their code.
– New code can be introduced using the old coding strategy.

11

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– Grep insufficient to find the problem.

• Changes may be widely scattered across the code base.
– Tedious and time-consuming to find all occurrences.

• Changes may come in many variants.
– Hard to anticipate; some variants may be overlooked.

• Developers are unaware of changes that affect their code.
– New code can be introduced using the old coding strategy.

11

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– Grep insufficient to find the problem.

• Changes may be widely scattered across the code base.
– Tedious and time-consuming to find all occurrences.

• Changes may come in many variants.
– Hard to anticipate; some variants may be overlooked.

• Developers are unaware of changes that affect their code.
– New code can be introduced using the old coding strategy.

11

Coccinelle to the rescue!

12

What is Coccinelle?

• Pattern-based tool for matching and transforming C code

• Under development since 2005. Open source since 2008.

• Allows code changes to be expressed using patch-like code patterns
(semantic patches).

• Goal: Automate large-scale changes in a way that fits with the habits of the
Linux kernel developer.

13

Starting point: a patch

--- a/drivers/atm/nicstar.c
+++ b/drivers/atm/nicstar.c
@@ -287,4 +287,2 @@
- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

ns_timer.expires = jiffies + NS_POLL_PERIOD;
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;

14

Semantic patches

• Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

• Derived from code, with abstraction.

15

Example: Creating an init_timer → setup_timer semantic patch

A patch: derived from drivers/atm/nicstar.c

- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

ns_timer.expires = jiffies + NS_POLL_PERIOD;
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;

16

Example: Creating an init_timer → setup_timer semantic patch

Remove irrelevant code:

- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

...
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;

17

Example: Creating an init_timer → setup_timer semantic patch

Abstract over subterms:

@@
expression timer, fn_arg, data_arg;
@@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;
- timer.function = fn_arg;

18

Example: Creating an init_timer → setup_timer semantic patch

Generalize a little more:

@@
expression timer, fn_arg, data_arg;
@@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;

19

Results

Dataset: 598 Linux kernel init_timer files from different versions.

• 828 calls.
• Our semantic patch updates 308 of them.

Untreated example: drivers/tty/n_gsm.c:

20

Results

Dataset: 598 Linux kernel init_timer files from different versions.

• 828 calls.
• Our semantic patch updates 308 of them.

Untreated example: drivers/tty/n_gsm.c:
init_timer(&dlci->t1);
dlci->t1.function = gsm_dlci_t1;
dlci->t1.data = (unsigned long)dlci;

21

Example: Creating an init_timer → setup_timer semantic patch

Extended semantic patch:
@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;

Covers 656/828 calls.

22

Example: Creating an init_timer → setup_timer semantic patch

Extended semantic patch:
@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;

@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.function = fn_arg;

...
- timer.data = data_arg;

Covers 656/828 calls. 23

Example: Creating an init_timer → setup_timer semantic patch

Remaining issues

• Some code initializes the function and data before calling init_timer.
• Some timers have no data initialization, default to 0.
• Coccinelle sometimes times out.

Complete semantic patch

• 6 rules, 68 lines of code.
• Covers 808/828 calls.
• TODO: Some timers have no local function or data initialization.

24

Semantic patch example

@@
expression root,e;
local idexpression child;
iterator name for_each_child_of_node;
@@

for_each_child_of_node(root, child) {
... when != of_node_put(child)

when != e = child
+ of_node_put(child);
? break;

...
}
... when != child

Used in the big v5.4 cleanup.
25

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– ... connects related fragments over control-flow paths.

• Changes may be widely scattered across the code base.
– Coccinelle finds an updates all relevant code automatically.

• Changes may come in many variants.
– Semantic patches are easily adapted to new variants.

• Developers are unaware of changes that affect their code.
– Semantic patches in commit logs document changes.
– Semantic patches can be collected in a library and checked during continuous

integration.

26

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– ... connects related fragments over control-flow paths.

• Changes may be widely scattered across the code base.
– Coccinelle finds an updates all relevant code automatically.

• Changes may come in many variants.
– Semantic patches are easily adapted to new variants.

• Developers are unaware of changes that affect their code.
– Semantic patches in commit logs document changes.
– Semantic patches can be collected in a library and checked during continuous

integration.

26

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– ... connects related fragments over control-flow paths.

• Changes may be widely scattered across the code base.
– Coccinelle finds an updates all relevant code automatically.

• Changes may come in many variants.
– Semantic patches are easily adapted to new variants.

• Developers are unaware of changes that affect their code.
– Semantic patches in commit logs document changes.
– Semantic patches can be collected in a library and checked during continuous

integration.

26

Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– ... connects related fragments over control-flow paths.

• Changes may be widely scattered across the code base.
– Coccinelle finds an updates all relevant code automatically.

• Changes may come in many variants.
– Semantic patches are easily adapted to new variants.

• Developers are unaware of changes that affect their code.
– Semantic patches in commit logs document changes.
– Semantic patches can be collected in a library and checked during continuous

integration.

26

Impact: Patches in the Linux kernel

Over 7700 Linux kernel commits up to Linux v5.5 (Jan 2020).

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

200

400

nu
m

be
r

Coccinelle developers
Outreachy interns
Kernel maintainers

Dedicated user
Others

27

Impact: Cleanup vs. bug fix changes among maintainer patches using Coccinelle

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0
100
200
300

nu
m

be
r Cleanups

Bug fixes

28

Impact: Maintainer use examples

TTY. Remove an unused function argument.

• 11 affected files.

DRM. Eliminate a redundant field in a data structure.

• 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

• 188 affected files.

29

Impact: 0-day reports mentioning Coccinelle per year

2013 2014 2015 2016 2017
0

200

400

#
wi

th
pa

tc
he

s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
wi

th
m

es
sa

ge
on

ly

30

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java

31

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java

31

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java

31

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java

31

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java

31

Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java
31

