Coccinelle:
10 Years of Automated Evolution in the Linux Kernel

Julia Lawall (Inria-Whisper team, Julia.Lawall@inria.fr)
March 2, 2020

Our focus: The Linux kernel

= Open source OS kernel, developed by Linus
Torvalds

= First released in 1991
= Version 1.0.0 released in 1994

= Today used in the top 500 supercomputers,
billions of smartphones (Android),
battleships, stock exchanges, ...

First release in 1991.

= v1.0in 1994: 121 KLOC, v2.0 in 1996: 500 KLOC

Recent evolution:

Million LOC

20
15
10
5
0

——

O N~ DDO—=N M OO 00 OO

OO0 O A A HrA Hrd A+ — QN
OO0 OO OO0 OO OO0 OO
ANANAAN AANANAN ANANANN NN NN

contributors

2,000
1,500
1,000
500

0

e

O N~V ANO=HN NS OO 00 OO
OO OHA"dd A Hd =+ =N
OO0 OO OO OO OO0 OO
AANAN ANANNAN AN AN NN AN

= e
[eNeNoNe)
=N W s

]

contributors

TIT

100 500 1000 500010000

contributions

Key challenge

As software grows, how to ensure its continued maintenance?

= Updating interfaces is easy.
Make functions and data structures:
— More efficient
— Easier to use correctly
— Better adapted to their usage context

Key challenge

As software grows, how to ensure its continued maintenance?

= Updating interfaces is easy.
Make functions and data structures:
— More efficient
— Easier to use correctly
— Better adapted to their usage context

= Updating the uses of interfaces gets harder as the software grows.
— More time consuming
— More error prone
— Need to communicate new coding strategies to all developers

Key challenge

As software grows, how to ensure its continued maintenance?

= Updating interfaces is easy.
Make functions and data structures:
— More efficient
— Easier to use correctly
— Better adapted to their usage context

= Updating the uses of interfaces gets harder as the software grows.

— More time consuming
— More error prone
— Need to communicate new coding strategies to all developers

Developers may hesitate to make needed changes.

Example change: init_timer — setup_timer

Initializing a timer requires:

= The callback function to run when the timer expires

= The data that should be passed to that callback function

Example change: init_timer — setup_timer

Initializing a timer requires:

= The callback function to run when the timer expires

= The data that should be passed to that callback function

Original initialization strategy (present in Linux v1.2.0):

init_timer (&ns_timer);
ns_timer.data = OUL;

ns_timer.function = ns_poll;

Example change: init_timer — setup_timer

Replacement initialization strategy (introduced in Linux v2.6.15, Jan. 2006):

setup_timer (&ns_timer, ns_poll, OUL);

Advantages:

= More concise
= More uniform

= More secure

Example change: init_timer — setup_timer

Call sites

600

400

200

= init__timer == setup__timer

v2.6.15

O o [=2¥e] < N~

o s @ S Q@ <+ 2

N N N S N

c = S >
= Q

1 o

- - < =

Example bug: missing of_node_puts

Device node structures are reference counted:

= of_node_get to access the structure.

= of_node_put to let go of the structure.

Iterators, e.g., for_each_child_of_node, put one value and get another.

= Explicit put needed on break, return, goto out of the loop.

= Often forgotten.

Example bug: missing of node_puts

’ = missing == present ‘
RRRRRRRRRR RN RN R AR R RN R AR AR AR AR RN AR AR R AR AR AR RR R AR RRRAN
250 - N
200 - N
[0}
£
(2]
o 150 - N
1S
3
=
100 |- N
50 |- N
0 e LT
NS = S 1 0 o
e & 28 RS 28
N - — - c 10
7 3 = £ s

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— Grep insufficient to find the problem.

11

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— Grep insufficient to find the problem.

= Changes may be widely scattered across the code base.

— Tedious and time-consuming to find all occurrences.

11

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— Grep insufficient to find the problem.

= Changes may be widely scattered across the code base.

— Tedious and time-consuming to find all occurrences.

= Changes may come in many variants.

— Hard to anticipate; some variants may be overlooked.

11

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— Grep insufficient to find the problem.

= Changes may be widely scattered across the code base.

— Tedious and time-consuming to find all occurrences.

= Changes may come in many variants.

— Hard to anticipate; some variants may be overlooked.

= Developers are unaware of changes that affect their code.

— New code can be introduced using the old coding strategy.

11

Coccinelle to the rescue!

12

What is Coccinelle?

= Pattern-based tool for matching and transforming C code
= Under development since 2005. Open source since 2008.

= Allows code changes to be expressed using patch-like code patterns
(semantic patches).

= Goal: Automate large-scale changes in a way that fits with the habits of the
Linux kernel developer.

13

Starting point: a patch

--- a/drivers/atm/nicstar.c

+++ b/drivers/atm/nicstar.c

@@ -287,4 +287,2 @@

- init_timer (&ns_timer);

+ setup_timer (&ns_timer, ns_poll, OUL);
ns_timer.expires = jiffies + NS_POLL_PERIOD;

= ns_timer.data = OUL;

= ns_timer.function = ns_poll;

14

Semantic patches

= Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

= Derived from code, with abstraction.

15

Example: Creating an init_timer — setup_timer semantic patch

A patch: derived from drivers/atm /nicstar.c

- init_timer (&ns_timer);

+ setup_timer (&ns_timer, ns_poll, OUL);
ns_timer.expires = jiffies + NS_POLL_PERIOD;

= ns_timer.data = OUL;

= ns_timer.function = ns_poll;

16

Example: Creating an init_timer — setup_timer semantic patch

Remove irrelevant code:

- init_timer (&ns_timer);
+ setup_timer (&ns_timer, ns_poll, OUL);

= ns_timer.data = OUL;

= ns_timer.function = ns_poll;

17

Example: Creating an init_timer — setup_timer semantic patch

Abstract over subterms:

((]¢]

expression timer, fn_arg, data_arg;

(]¢l

- init_timer (&timer);

+ setup_timer (&timer, fn_arg, data_arg);

= timer.data = data_arg;

= timer.function = fn_arg;

18

Example: Creating an init_timer — setup_timer semantic patch

Generalize a little more:

((]¢]

expression timer, fn_arg, data_arg;

(]¢l

- init_timer (&timer);

+ setup_timer (&timer, fn_arg, data_arg);

= timer.data = data_arg;

= timer.function = fn_arg;

19

Dataset: 598 Linux kernel init_timer files from different versions.

= 328 calls.
= QOur semantic patch updates 308 of them.

20

Dataset: 598 Linux kernel init_timer files from different versions.

= 328 calls.
= QOur semantic patch updates 308 of them.

Untreated example: drivers/tty/n_gsm.c:

init_timer (&dlci->t1);
dlci->t1.function = gsm_dlci_t1;
dlci->tl.data = (unsigned long)dlci;

21

Example: Creating an init_timer — setup_timer semantic patch

Extended semantic patch:

Q@ expression timer, fn_arg, data_arg; @@

- init_timer (&timer);

+ setup_timer (&timer, fn_arg, data_arg);

= timer.data = data_arg;

= timer.function = fn_arg;

22

Example: Creating an init_timer — setup_timer semantic patch

Extended semantic patch:

Q@ expression timer, fn_arg, data_arg; @@

- init_timer (&timer);

+ setup_timer (&timer, fn_arg, data_arg);
= timer.data = data_arg;

= timer.function = fn_arg;

Q@ expression timer, fn_arg, data_arg; @@

- init_timer (&timer);

+ setup_timer (&timer, fn_arg, data_arg);

= timer.function = fn_arg;

= timer.data = data_arg;

Covers 656/828 calls. -

Example: Creating an init_timer — setup_timer semantic patch

Remaining issues

= Some code initializes the function and data before calling init_timer.
= Some timers have no data initialization, default to 0.

= Coccinelle sometimes times out.

Complete semantic patch

= 6 rules, 68 lines of code.
= Covers 808/828 calls.

= TODO: Some timers have no local function or data initialization.

24

Semantic patch example

(¢[¢]
expression root,e;
local idexpression child;

iterator name for_each_child_of_node;
(¢}

for_each_child_of_node(root, child) {
when != of_node_put(child)
when != e = child
of _node_put (child);
break;

when != child

Used in the big v5.4 cleanup.
25

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— ... connects related fragments over control-flow paths.

26

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— ... connects related fragments over control-flow paths.

= Changes may be widely scattered across the code base.

— Coccinelle finds an updates all relevant code automatically.

26

Assessment

Changes may involve scattered code fragments and data and control flow
relationships between them.

— ... connects related fragments over control-flow paths.

Changes may be widely scattered across the code base.

— Coccinelle finds an updates all relevant code automatically.

Changes may come in many variants.
— Semantic patches are easily adapted to new variants.

26

Assessment

= Changes may involve scattered code fragments and data and control flow
relationships between them.

— ... connects related fragments over control-flow paths.

= Changes may be widely scattered across the code base.

— Coccinelle finds an updates all relevant code automatically.

= Changes may come in many variants.
— Semantic patches are easily adapted to new variants.

= Developers are unaware of changes that affect their code.
— Semantic patches in commit logs document changes.
— Semantic patches can be collected in a library and checked during continuous
integration.

26

Impact: Patches in the Linux kernel

Over 7700 Linux kernel commits up to Linux v5.5 (Jan 2020).

- @- Coccinelle developers
—m— Outreachy interns
—e— Kernel maintainers
—+— Dedicated user

o Others
5 400 -
o
E 200 .
c
O [|

27

Impact: Cleanup vs. bug fix changes among maintainer patches using Coccinelle

300 || —— Cleanups |
P
2 200 || = Bug fixes .
£ 1
5 [.
= 100
s | | | | | [
0 OO0 H AN M < 1O O N~
o O - - — — — — —
S ©O O O O O O ©O O O
SR sV s VR S VAR oA o VA SV oVl S Vil oY|

28

Impact: Maintainer use examples

TTY. Remove an unused function argument.

= 11 affected files.

DRM. Eliminate a redundant field in a data structure.

= 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

= 188 affected files.

29

Impact: 0-day reports mentioning Coccinelle per year

’ O api [free L iterators M locks M null M tests M misc ‘

v 400 T T T T T =
=
(9]
w
2 200 (- 8
i
2

L = |—] |
= 0 \ | | . .

2013 2014 2015 2016 2017

>
c
]
o 200 - |
)
2
o 100 - —
E !
E Uls -\ g !\ | . |
H 2013 2014 2015 2016 2017

30

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

31

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

= Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

31

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

= Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

= Future work: Automatic generation of semantic patches from examples.

31

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

= Success: Almost 8000 commits in the Linux kernel based on Coccinelle.
= Future work: Automatic generation of semantic patches from examples.

= Beyond C: Some support for C++, a variant for Java (Coccinelle4))

31

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

= Future work: Automatic generation of semantic patches from examples.

Beyond C: Some support for C++, a variant for Java (Coccinelle4))

= Probably, everyone in this room uses some Coccinelle modified code!

31

Conclusion

= Coccinelle: brings automatic matching and transformation to the systems software
developer.
— Enables needed evolution, independent of the amount of affected code.

= Success: Almost 8000 commits in the Linux kernel based on Coccinelle.
= Future work: Automatic generation of semantic patches from examples.
= Beyond C: Some support for C++, a variant for Java (Coccinelle4J)
= Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com /coccinelle/coccinelle
https://github.com /kanghj/coccinelle /tree/java

31

