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Our focus: The Linux kernel

• Open source OS kernel, developed by Linus
Torvalds

• First released in 1991

• Version 1.0.0 released in 1994

• Today used in the top 500 supercomputers,
billions of smartphones (Android),
battleships, stock exchanges, …
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Some history

First release in 1991.

• v1.0 in 1994: 121 KLOC, v2.0 in 1996: 500 KLOC

Recent evolution:
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Key challenge

As software grows, how to ensure its continued maintenance?

• Updating interfaces is easy.
Make functions and data structures:

– More efficient
– Easier to use correctly
– Better adapted to their usage context

• Updating the uses of interfaces gets harder as the software grows.
– More time consuming
– More error prone
– Need to communicate new coding strategies to all developers

Developers may hesitate to make needed changes.
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Example change: init_timer → setup_timer

Initializing a timer requires:

• The callback function to run when the timer expires
• The data that should be passed to that callback function

Original initialization strategy (present in Linux v1.2.0, 1995):
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Example change: init_timer → setup_timer

Initializing a timer requires:

• The callback function to run when the timer expires
• The data that should be passed to that callback function

Original initialization strategy (present in Linux v1.2.0):
init_timer(&ns_timer);
ns_timer.data = 0UL;
ns_timer.function = ns_poll;
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Example change: init_timer → setup_timer

Replacement initialization strategy (introduced in Linux v2.6.15, Jan. 2006):
setup_timer(&ns_timer , ns_poll , 0UL);

Advantages:

• More concise
• More uniform
• More secure

7



Example change: init_timer → setup_timer
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Example bug: missing of_node_puts

Device node structures are reference counted:

• of_node_get to access the structure.
• of_node_put to let go of the structure.

Iterators, e.g., for_each_child_of_node, put one value and get another.

• Explicit put needed on break, return, goto out of the loop.
• Often forgotten.
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Example bug: missing of_node_puts
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Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– Grep insufficient to find the problem.

• Changes may be widely scattered across the code base.
– Tedious and time-consuming to find all occurrences.

• Changes may come in many variants.
– Hard to anticipate; some variants may be overlooked.

• Developers are unaware of changes that affect their code.
– New code can be introduced using the old coding strategy.
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Coccinelle to the rescue!
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What is Coccinelle?

• Pattern-based tool for matching and transforming C code

• Under development since 2005. Open source since 2008.

• Allows code changes to be expressed using patch-like code patterns
(semantic patches).

• Goal: Automate large-scale changes in a way that fits with the habits of the
Linux kernel developer.
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Starting point: a patch

--- a/drivers/atm/nicstar.c
+++ b/drivers/atm/nicstar.c
@@ -287,4 +287,2 @@
- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

ns_timer.expires = jiffies + NS_POLL_PERIOD;
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;
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Semantic patches

• Like patches, but independent of irrelevant details
(line numbers, spacing, variable names, etc.)

• Derived from code, with abstraction.
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Example: Creating an init_timer → setup_timer semantic patch

A patch: derived from drivers/atm/nicstar.c

- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

ns_timer.expires = jiffies + NS_POLL_PERIOD;
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;
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Example: Creating an init_timer → setup_timer semantic patch

Remove irrelevant code:

- init_timer(&ns_timer);
+ setup_timer(&ns_timer , ns_poll , 0UL);

...
- ns_timer.data = 0UL;
- ns_timer.function = ns_poll;
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Example: Creating an init_timer → setup_timer semantic patch

Abstract over subterms:

@@
expression timer, fn_arg, data_arg;
@@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;
- timer.function = fn_arg;
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Example: Creating an init_timer → setup_timer semantic patch

Generalize a little more:

@@
expression timer, fn_arg, data_arg;
@@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;
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Results

Dataset: 598 Linux kernel init_timer files from different versions.

• 828 calls.
• Our semantic patch updates 308 of them.

Untreated example: drivers/tty/n_gsm.c:
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Results

Dataset: 598 Linux kernel init_timer files from different versions.

• 828 calls.
• Our semantic patch updates 308 of them.

Untreated example: drivers/tty/n_gsm.c:
init_timer(&dlci->t1);
dlci->t1.function = gsm_dlci_t1;
dlci->t1.data = (unsigned long)dlci;
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Example: Creating an init_timer → setup_timer semantic patch

Extended semantic patch:
@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;

Covers 656/828 calls.
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Example: Creating an init_timer → setup_timer semantic patch

Extended semantic patch:
@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.data = data_arg;

...
- timer.function = fn_arg;

@@ expression timer, fn_arg, data_arg; @@
- init_timer(&timer);
+ setup_timer(&timer, fn_arg, data_arg);

...
- timer.function = fn_arg;

...
- timer.data = data_arg;

Covers 656/828 calls. 23



Example: Creating an init_timer → setup_timer semantic patch

Remaining issues

• Some code initializes the function and data before calling init_timer.
• Some timers have no data initialization, default to 0.
• Coccinelle sometimes times out.

Complete semantic patch

• 6 rules, 68 lines of code.
• Covers 808/828 calls.
• TODO: Some timers have no local function or data initialization.
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Semantic patch example

@@
expression root,e;
local idexpression child;
iterator name for_each_child_of_node;
@@

for_each_child_of_node(root, child) {
... when != of_node_put(child)

when != e = child
+ of_node_put(child);
? break;

...
}
... when != child

Used in the big v5.4 cleanup.
25



Assessment

• Changes may involve scattered code fragments and data and control flow
relationships between them.

– ... connects related fragments over control-flow paths.

• Changes may be widely scattered across the code base.
– Coccinelle finds an updates all relevant code automatically.

• Changes may come in many variants.
– Semantic patches are easily adapted to new variants.

• Developers are unaware of changes that affect their code.
– Semantic patches in commit logs document changes.
– Semantic patches can be collected in a library and checked during continuous

integration.
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Impact: Patches in the Linux kernel

Over 7700 Linux kernel commits up to Linux v5.5 (Jan 2020).
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Impact: Cleanup vs. bug fix changes among maintainer patches using Coccinelle
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Impact: Maintainer use examples

TTY. Remove an unused function argument.

• 11 affected files.

DRM. Eliminate a redundant field in a data structure.

• 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

• 188 affected files.
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Impact: 0-day reports mentioning Coccinelle per year
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Conclusion

• Coccinelle: brings automatic matching and transformation to the systems software
developer.

– Enables needed evolution, independent of the amount of affected code.

• Success: Almost 8000 commits in the Linux kernel based on Coccinelle.

• Future work: Automatic generation of semantic patches from examples.

• Beyond C: Some support for C++, a variant for Java (Coccinelle4J)

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle

https://github.com/kanghj/coccinelle/tree/java
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