
The Modern Platform in 2020
Justin Cormack 



Who am I?
Engineer at Docker in Cambridge, UK.

Docker ❤ developers

Work on security, systems software, applications, LinuxKit, containers

@justincormack

2





From OS to languages?



From OS to languages

• I have moved from running QCon Operating System tracks to language 
tracks over the last few years

• For me not a big change, unikernels are a language approach to the 
OS, and the language that we use to write the OS are important

• Many of the drivers for change in the two areas are similar...

5



Has anything really changed recently?



Drivers of change

• Performance requirements - going to talk a lot about these
• Hardware is changing because of these. Vectors, GPU, FPGA, we are 

moving away from the classic PDP-11 C model
• On the other end, we are programming billions of tiny devices
• Security is important. Our software is being attacked faster than ever, 

and languages can help us.

7



The environment

• the two huge C/C++/... compiler projects, gcc and LLVM have become 
amazingly successful, as has OpenJDK for the JVM.

• gcc witnessed the birth of commercial open source, with Cygnus 
("Cygnus your GNU support") being the first real commercial open 
source company founded in 1989, later acquired by Red Hat.

• Cygnus was so successful that most commercial compiler vendors shut 
down.

• LLVM, supported by Apple and later others has provided competition.
• These projects have provided ability for lots of languages to thrive.
• Many other languages have their own compilers and interpreters...

8



Performance



Performance

“A supercomputer is a device for turning compute-bound 
problems into I/O bound problems.”

Ken Batcher

10



Storage and network got much faster

• cheap 25 gigabit ethernet
• 100 gigabit ethernet
• millions of packets/sec
• SSD, NVMe, NVDIMM
• millions of IO/sec
• IO bandwidth way up
• clock speeds only doubled
• lots of CPU cores

11



This is changing everything

• 1Gb ethernet to 100Gb, two orders of magnitude faster
• SSD seek time two orders of magnitude faster than disk

• Back in the early 2000s in memory databases were the big thing
• C10K, 10 thousand connections on a server, was hard
• epoll was invented to fix this, and events not threads

• SSD can now commit at network wire speed
• C10M is possible now
• every CPU cycle counts, 10GbE is up to 14m packets/s
• only 130 clock cycles per packet!

12



Storage is changing as fast

• Solid state storage has replaced spinning rust everywhere
• Laptops
• Databases
• Most non-archival storage soon
• Latency driven

Next stage is NV-Dimm
• Flash in memory form factor
• 10x capacity of RAM, lower power consumption
• Latency little higher, write directly from CPU not via RAM.
• Cache-line addressable

13



Power and heterogeneity



Power consumption of computers

• data centres consume roughly 3% of electricity, a share that is growing
• large cloud providers are more efficient than traditional centres
• we need to make our use of computers a lot more efficient

• also, don't do unnecessary computation
• also, use computers powered by renewable energy

15



16



What can we do now?

• use hardware that we have now
– vectorization (AVX-512 was a GPU design!)
– other CPU accelerators such as crypto
– GPU
– FPGA

• our programming languages don't expose these, our compilation 
targets don't include these in general

• see 1.40pm Java for GPUs and FPGAs, Juan Jose Fumero Alfonso
• factors of 10 or even more in efficiency for suitable code!

17



We need languages that map better

• JIT is a great solution to extract parallel, vector and GPU friendly code
• right now much vector code is hand written with intrinsics! This is close 

to going back to writing assembly.
– eg see simdjson https://github.com/lemire/simdjson parse JSON at 

gigabytes a second.
• GPU code has special toolchains such as CUDA.
• Julia is doing great work in exploring this space for numerical work.

18

https://github.com/lemire/simdjson


Languages that output languages



Languages are generating more languages

• We have frameworks that generate configuration Yaml from code, such 
as Pulumi and jk

• We have languages that generate hardware description languages, 
such as Chisel, which is Scala used to generate hardware description 
graph, to design chips.

• We have frameworks such as Tensorflow that generate computation 
graphs for ML applications, from Swift or Python.

• Language technology is ending up everywhere in our stacks...

20



Not just the high performance, the small



Reprogramming the small

• efficiency in servers is important, but there are vast numbers of smaller 
devices

• scavenged power and ultra low power especially important, so 
accelerators just as important in longer run

• over 20bn Arm chips, mostly microcontrollers ship every year
• over time microcontrollers are moving from 8 bit to 32 bit RISC
• too cheap and low power to run Linux, historically programmed in C or 

assembly.
• we need higher level languages to enable broader base of 

programmers and lots of new applications.
• see 4.10pm Tiny Go, Small is Going Big by Ron Evans

22



Accelerators on microcontrollers

• as microcontrollers becoming exposed over networks they need 
encryption and authentication

• software encryption is very slow
• even areas such as toys are seeing this, a microcontroller in a toy may 

need to communicate with an App on a phone
• so accelerators for encryption are growing in use
• also AI apps. Running models on microcontrollers is feasible if heavily 

optimised, even down to 1 bit operations
• microcontrollers with AI acceleration to do basic processing becoming 

more common.

23



Web Assembly



What is so different about the Wasm platform?

• surely we have had platforms like the JVM before?
• first, it has shipped in the browser, the first new platform there since the 

JVM and Flash were removed. No longer a JavaScript only world.
• because of the draw of the web platform, almost every language has a 

Wasm strategy now, so it is becoming a universal target.
• we have learned from previous designs and have an open process to 

add features to benefit all targets.
• interesting new platforms like CloudFlare's web workers based on 

Wasm.
• 2.55pm Build your own WebAssembly Compiler Colin Eberhardt

25



Multi and mixed language support

• one dream for Wasm is that we will get mixed language interoperability.
• this is a really hard problem! languages have different concepts!
• Python does not understand Rust linearity restrictions!
• ownership and garbage collection are hard problems
• the JVM worked around this by forcing all languages into one model to 

a large extent.
• making this work will be hard but a lot of people are going to try!

26



Safety



The rise of automation in security testing

• the first highly successful fuzz tester, American Fuzzy Lop was 
released in 2013

• fuzz testing is now available as a service and works really well, see 
Fuzzbuzz, OSS-Fuzz from Google, Microsoft Security Risk Detection

• also tools such as Semmle, bought by GitHub last year, which given 
one security issue finds more related ones

28



Better at finding issues

29



What kind of issues?

30



Right now, memory safety issues dominate

• estimates are that 70% of security issues are memory safety
• pretty much every language created in the last 20-30 years is memory 

safe. We have huge amounts of critical infrastructure in C!
• CVEs will continue until we can migrate to newer languages
• but languages can get us more than memory safety

31



Beyond memory safety

• the next frontier is safe concurrency
• we are increasingly writing highly concurrent programs
• that is partly to increase resource efficiency, and because the world we 

interface with works like that
• deadlocks and race conditions and locking bugs can be fixed by 

languages and types too!
• These are correctness bugs and security issues.
• 5.25pm Pony, Types and Garbage Collection, Sophia Drossopoulou 
• Pony is a little known but really lovely language used in areas such as 

high performance streaming applications, which offers totally safe 
concurrency.

32



Languages everywhere



Languages everywhere

34



Why so many?

• there are more than that!
• languages are our tools as programmers, and the more kinds of thing 

we try to do the more languages we build
• as we try to do more complex things we learn more about how we can 

use languages to do these.
• we want to be able to manipulate our languages with code, and so 

much more, and the languages we have are not great for that.

35



What next in languages?

• this post "What next?" by Graydon Hoare has some ideas 
http://graydon2.dreamwidth.org/253769.html 

• I think the bugs and security issues that it causes and the coding 
difficulties mean that we need to get rid of "undefined behaviour" next.

• this is part of the journey to being able to reason about what code 
does, which is necessary for many uses doing transformation of code 
correctly, and formal methods, another frontier.

• we need to make language technology more accessible (like the Wasm 
talk later does!), make small languages (Tiny Go!), make safe 
languages (Pony!) and make it easier to work with real modern 
hardware (TornadoVM!)

36

http://graydon2.dreamwidth.org/253769.html




Language shapes the way we think

• understanding the different approaches languages take is one of the 
most important things about learning to deeply understand 
programming.

• Many projects and products are building languages and language 
technology deeply into them to add powerful new features.

• Hardware and software and power consumption and performance are 
going to be driven by new things we do with programming languages.

38



THANK YOU


