The Modern Platform in 2020

Justin Cormack

Who am [|?

Engineer at Docker in Cambridge, UK.
Docker € developers
Work on security, systems software, applications, LinuxKit, containers

@justincormack

) docker

TN
3 g

-

Vi
PN

From OS to languages?

docker

From OS to languages

* | have moved from running QCon Operating System tracks to language
tracks over the last few years

* For me not a big change, unikernels are a language approach to the
OS, and the language that we use to write the OS are important

« Many of the drivers for change in the two areas are similar...

docker

Has anything really changed recently?

docker

Drivers of change

« Performance requirements - going to talk a lot about these

* Hardware is changing because of these. Vectors, GPU, FPGA, we are
moving away from the classic PDP-11 C model

* On the other end, we are programming billions of tiny devices

« Security is important. Our software is being attacked faster than ever,
and languages can help us.

docker

The environment

 the two huge C/C++/... compiler projects, gcc and LLVM have become
amazingly successful, as has OpenJDK for the JVM.

+ gcc witnessed the birth of commercial open source, with Cygnus
("Cygnus your GNU support") being the first real commercial open
source company founded in 1989, later acquired by Red Hat.

« Cygnus was so successful that most commercial compiler vendors shut
down.

- LLVM, supported by Apple and later others has provided competition.

+ These projects have provided ability for lots of languages to thrive.

- Many other languages have their own compilers and interpreters...

&

o docker

Performance

docker

Performance

“A supercomputer is a device for turning compute-bound
problems into I/O bound problems.”

Ken Batcher

0 docker

Storage and network got much faster

11

Cheap_ 25 gigabit ethernet 2020 High Speed NIC Revenue
100 gigabit ethernet

millions of packets/sec
SSD, NVMe, NVDIMM
millions of |O/sec

|O bandwidth way up
clock speeds only doubled
lots of CPU cores

m 10 GbpsEthernet
m 25 GbpsEthernet
m 40 GbpsEthernet
m 50 GbpsEthernet

W 100 Gbps Ethernet

Based on Data from Crehan Research

&

docker

This is changing everything

12

1Gb ethernet to 100GDb, two orders of magnitude faster
SSD seek time two orders of magnitude faster than disk

Back in the early 2000s in memory databases were the big thing
C10K, 10 thousand connections on a server, was hard
epoll was invented to fix this, and events not threads

SSD can now commit at network wire speed

C10M is possible now

every CPU cycle counts, 10GbE is up to 14m packets/s

only 130 clock cycles per packet! e

docker

Storage is changing as fast

« Solid state storage has replaced spinning rust everywhere
- Laptops

- Databases

« Most non-archival storage soon

- Latency driven

Next stage is NV-Dimm

* Flash in memory form factor

« 10x capacity of RAM, lower power consumption

- Latency little higher, write directly from CPU not via RAM.

« Cache-line addressable &

. docker

Power and heterogeneity

docker

Power consumption of computers

+ data centres consume roughly 3% of electricity, a share that is growing
 large cloud providers are more efficient than traditional centres
* we need to make our use of computers a lot more efficient

- also, don't do unnecessary computation
- also, use computers powered by renewable energy

" docker

Understanding Sources of Inefficiency

in General-Purpose Chips

Rehan Hameed', Wajahat Qadeer’, Megan Wachs', Omid Azizi', Alex Solomatnikov?,
Benjamin C. Lee', Stephen Richardson’, Christos Kozyrakis' and Mark Horowitz'

'Dept. of Electrical Engineering
Stanford University, Stanford, CA
{rhameed, wqadeer, wachs, oazizi,
bcclee, steveri, kozyraki, horowitz}@stanford.edu

ABSTRACT

Due to their high volume, general-purpose processors, and now
chip multiprocessors (CMPs), are much more cost effective than
ASICs, but lag significantly in terms of performance and energy
efficiency. This paper explores the sources of these performance
and energy overheads in general-purpose processing systems by
quantifying the overheads of a 720p HD H.264 encoder running
on a general-purpose CMP system. It then explores methods to
eliminate these overheads by transforming the CPU into a
specialized system for H.264 encoding. We evaluate the gains
from customizations useful to broad classes of algorithms, such as
SIMD units, as well as those specific to particular computation,
such as customized storage and functional units.

The ASIC is 500x more energy efficient than our original four-

nracecentr CNMP Rroadly annlicabhle anfimi7zatione imnrove

’Hicamp Systems,
Menlo Park, CA
solomatnikov@gmail.com

1. INTRODUCTION

Most computing systems today are power limited, whether it is
the 1W limit of a cell phone, or the 100W limit of a server. Since
technology scaling no longer provides the energy savings, it once
did [1], designers must turn to other techniques for continued
performance improvements and tractable energy costs. One
attractive option is to understand and to incorporate sources of
ASIC efficiency, since general-purpose processors can be
outclassed by three orders of magnitude in both performance and
energy efficiency by ASIC designs [5].

The desire to achieve ASIC-like compute efficiencies with
microprocessor-like application development cost is pushing
designers to explore two new areas. One area aims to create CPU

designs with much lower energy per instruction [6], while the
other atme o create new decion methodalaociece o rediice the coct

What can we do now?

use hardware that we have now

— vectorization (AVX-512 was a GPU design!)
— other CPU accelerators such as crypto

- GPU

— FPGA

* our programming languages don't expose these, our compilation
targets don't include these in general

« see 1.40pm Java for GPUs and FPGAs, Juan Jose Fumero Alfonso

- factors of 10 or even more in efficiency for suitable code!

&

- docker

We need languages that map better

18

JIT is a great solution to extract parallel, vector and GPU friendly code
right now much vector code is hand written with intrinsics! This is close
to going back to writing assembly.
— eg see simdjson hitps://github.com/lemire/simdjson parse JSON at
gigabytes a second.
GPU code has special toolchains such as CUDA.

Julia is doing great work in exploring this space for numerical work.

&

docker

https://github.com/lemire/simdjson

Languages that output languages

docker

Languages are generating more languages

20

We have frameworks that generate configuration Yaml from code, such
as Pulumi and jk

We have languages that generate hardware description languages,
such as Chisel, which is Scala used to generate hardware description
graph, to design chips.

We have frameworks such as Tensorflow that generate computation
graphs for ML applications, from Swift or Python.

Language technology is ending up everywhere in our stacks...

docker

Not just the high performance, the small

docker

Reprogramming the small

22

efficiency in servers is important, but there are vast numbers of smaller
devices

scavenged power and ultra low power especially important, so
accelerators just as important in longer run

over 20bn Arm chips, mostly microcontrollers ship every year

over time microcontrollers are moving from 8 bit to 32 bit RISC

too cheap and low power to run Linux, historically programmed in C or
assembly.

we need higher level languages to enable broader base of
programmers and lots of new applications.

see 4.10pm Tiny Go, Small is Going Big by Ron Evans

&

docker

Accelerators on microcontrollers

23

as microcontrollers becoming exposed over networks they need
encryption and authentication

software encryption is very slow

even areas such as toys are seeing this, a microcontroller in a toy may
need to communicate with an App on a phone

so accelerators for encryption are growing in use

also Al apps. Running models on microcontrollers is feasible if heavily
optimised, even down to 1 bit operations

microcontrollers with Al acceleration to do basic processing becoming
more common.

&

docker

Web Assembly

docker

What is so different about the \Wasm platform?

25

surely we have had platforms like the JVM before?

first, it has shipped in the browser, the first new platform there since the
JVM and Flash were removed. No longer a JavaScript only world.
because of the draw of the web platform, almost every language has a
Wasm strategy now, so it is becoming a universal target.

we have learned from previous designs and have an open process to
add features to benefit all targets.

interesting new platforms like CloudFlare's web workers based on
Wasm.

2.55pm Build your own WebAssembly Compiler Colin Eberhardt

&

docker

Multi and mixed language support

26

one dream for Wasm is that we will get mixed language interoperability.
this is a really hard problem! languages have different concepts!
Python does not understand Rust linearity restrictions!

ownership and garbage collection are hard problems

the JVM worked around this by forcing all languages into one model to
a large extent.

making this work will be hard but a lot of people are going to try!

docker

Safety

The rise of automation in security testing

* the first highly successful fuzz tester, American Fuzzy Lop was
released in 2013

« fuzz testing is now available as a service and works really well, see
Fuzzbuzz, OSS-Fuzz from Google, Microsoft Security Risk Detection

 also tools such as Semmle, bought by GitHub last year, which given
one security issue finds more related ones

- docker

ing issues

Better at find

Number of CVEs per year

20000

15000

5000

o
o
o
o
-—

S3A0 10 lBquInN

Year

docker

29

What kind of issues?

» heap buffer overflows
e global buffer overflows
» stack buffer overflows
e use after frees

e uninitialized memory
e stack overflows

e timeouts

°*ooms

e leaks

e ubsan

e unknown crashes

« other (e.g. assertions) &

docker

Right now, memory safety issues dominate

31

estimates are that 70% of security issues are memory safety

pretty much every language created in the last 20-30 years is memory
safe. We have huge amounts of critical infrastructure in C!

CVEs will continue until we can migrate to newer languages

but languages can get us more than memory safety

docker

Beyond memory safety

32

the next frontier is safe concurrency

we are increasingly writing highly concurrent programs
that is partly to increase resource efficiency, and because the world we
interface with works like that

deadlocks and race conditions and locking bugs can be fixed by
languages and types too!

These are correctness bugs and security issues.

5.25pm Pony, Types and Garbage Collection, Sophia Drossopoulou
Pony is a little known but really lovely language used in areas such as
high performance streaming applications, which offers totally safe
concurrency.

&

docker

Languages everywhere

docker

Languages everywhere

Popularity Rank on Stack Overflow (by # of Tags)

34

100

75-

50~

25~

RedMonk Q120 Programming Language Rankings

Visual Basic

Matlab

GCC Machine Descriptioassembly

PLSQL
Arduino

Cala TYPEScrip
hedhell

Rust
CoffeeScript
Elixir
Julia

Cuda ColdFusion
jonScri FORT
ActionScript QML .
o Scheme Tel
Processing ¢, OCaml
VHDL verilg
9 Racket
XQuery) i
Mathematica e
FreeMarker prngBﬂBﬂﬁf
Lo Pascal
Web Ontology Languag&
tandSRAML .
idi Smalltalk
Solidity h
Raku axe
PeivgsE SaltStack
- e A
WebAssembly Ao I
NI PureScript Tys! T
i im
MAXScrigby Biueprint . s
acl :
3ame Maker Lars: ual GDScript
seRgyn Vim'36pt
Sout
SQF
Roff DM

50
Popularity Rank on GitHub (by # of Projects)

Rub

y
t

docker

Why so many?

35

there are more than that!

languages are our tools as programmers, and the more kinds of thing
we try to do the more languages we build

as we try to do more complex things we learn more about how we can
use languages to do these.

we want to be able to manipulate our languages with code, and so
much more, and the languages we have are not great for that.

docker

What next in languages?

36

this post "What next?" by Graydon Hoare has some ideas
http://graydon2.dreamwidth.org/253769.html

| think the bugs and security issues that it causes and the coding
difficulties mean that we need to get rid of "undefined behaviour" next.
this is part of the journey to being able to reason about what code
does, which is necessary for many uses doing transformation of code
correctly, and formal methods, another frontier.

we need to make language technology more accessible (like the Wasm
talk later does!), make small languages (Tiny Go!), make safe
languages (Pony!) and make it easier to work with real modern
hardware (TornadoVM!)

&

docker

http://graydon2.dreamwidth.org/253769.html

Language shapes the way we think

» understanding the different approaches languages take is one of the
most important things about learning to deeply understand
programming.

* Many projects and products are building languages and language
technology deeply into them to add powerful new features.

- Hardware and software and power consumption and performance are
going to be driven by new things we do with programming languages.

&

- docker

THANK YOU

