Security Vulnerabilities
Decomposition

Katy Anton



OWASP Top 10




|

Whoa, just take it easy man!
)!h&h_ ——— -

Y @KatyAnton




Katy Anton

e Software development background OWASP &
« ctive
CONTROLS
e Project co-leader for W A A
OWASP Top 10 Proactive Controls T?P 150 fzmacﬁgc Cfl’"tm's
Oor ooTrtware veveiopers
(@OWASPControls) .

e Principle Application Security Consultant l S A )

Y @KatyAnton




Common Weakness Enumeration

A formal list for of software security weaknesses in:
e architecture
e design
e code

Source: https://cwe.mitre.org/

Y @KatyAnton




NVD: CWE Categories

ﬁ—ﬁ

_{gﬂ%

——-H

v—-"

.-—"H

L ?

WE-454
—
—
%
-—---_-—-—--

Source: https://nvd.nist.gov/vuln/categories/cwe-layout
3y @KatyAnton



Injection Category

Y @KatyAnton




CWEs in Injection Category

>

CWE-77:

Commmand Injection

/,|CWE-78: 0S Cmd Inj

CWE-78: Argument Inj

———/ CWE-78:

XSS

CWE-74
Injection

—

CWE-91:

XML Injection

—

CWE-93:

CRLF Injection

———— CWE-94:

Code Injection

>

CWE-943:

Improper Neutr. of Special El in Query

/JCWE-89: sQL Injection

CWE-90:LDAP Injection

Source: NVD




4
T
5.
¥
(s
r
v,
w

’@KatyAnton




Is there another way to look at it?

Y @KatyAnton




Decompose the Injection

Data interpreted as Code

Input —> Parser —> Output

Get / Post Data SQL Parser SQL

~ile Uploads HTML Parser HTML

HTTP Headers XML Parser XML
Database Data Shell Bash Script
Config files LDAP Parser LDAP Query

3y @KatyAnton



Extract Security Controls

Parser

Vulnerability Encode Output Parameterize Validate Input
XSS
SQL Injection
XML Injection
Code Injection
LDAP Injection
Cmd Injection

—~ —, —
Primary Controls Defence in depth

3y @KatyAnton



Intrusions

(or lack of Intrusion Detection)

Y @KatyAnton




If a pen tester is able to get into a system
without being detected, then there is
insufficient logging and monitoring in place

Y @KatyAnton




Security Controls: Security Logging

The security control developers can use
to log security information during the
runtime operation of an application.

Y @KatyAnton




The 6 Best Types of Detection Points

Good attack identifiers:

Authorisation failures
Authentication failures
Client-side input validation bypass
Whitelist input validation failures
Obvious code injection attack
High rate of function use

Dl o BN =

Y @KatyAnton




Examples of Intrusion Detection Points

Request Exceptions
e Application receives GET when expecting POST
e Additional form /URL parameters

Y @KatyAnton




Examples of Intrusion Detection Points

Authentication Exceptions
« Additional variables received during an authentication
like ‘admin=true”
e Providing only one of the credentials

The user submits POST request which only contains the
username variable. The password was removed.

Y @KatyAnton




Examples of Intrusion Detection Points

Input Exceptions

 Input validation failure on server despite client side
validation

 Input validation failure on server side on non-user
editable parameters

e e.q:hidden fields, checkboxes, radio buttons, etc

S
Y @KatyAnton




Secure Data Handling: Basic Workflow

Application Server

Operating System

Log Exceptions

Software Application

Param Queries

Validate Data

Y @KatyAnton




Sensitive Date Exposure

Data at Rest and in Transit

Y @KatyAnton




Data

Data Types Encryption Hashing

Data at Rest: Requires initial value
E.q: credit card

Data at Rest: Doesn’t require initial value

E.q: user passwords

Data in Transit

3y @KatyAnton



Data at Rest: Design Vulnerability example

How Not to Do it !

N the same folder - 2 file:

encrypted-password. txt
password=entities.txt

The contentaf password.txt:
cryptography . séeda=abcd
cryptograptiy.salt=12345
cryptography.iterations=1000

.
|
p .
-~ A
1
‘ l.
‘ i
i
y
|

enrcryption_key = PBKF2(psswd, salt, iterations, key_length);

Y @KatyAnton



Encryption: Security Controls

Strong Encryption Algorithm: AES

Key Management

« Store unencrypted keys away from the encrypted data.

« Protect keys in a Key Vault (Hashicorp Vault / Amazon KMS)
Keep away from home grown key management solutions.
Define a key lifecycle.

Build support for changing algorithms and keys when needed
Document procedures for managing keys through the lifecycle

Source: https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

Y @KatyAnton



https://www.vaultproject.io/
https://aws.amazon.com/kms/

Data in Transit: Security Controls

Application Server

Operating System

Software Application

Y @KatyAnton



Third Party Components

Using Software Components with Known Vulnerabilities

Y @KatyAnton




State of Software Security

HSTEOF =
SJFTWARE
SE CURITY:‘L

VVVVVV

Apps with at least 1 vulnerable component:
e 85.7% of .Net applications
e 927% of C++ applications

Source: : https://www.veracode.com/state-of-softwar urity-report

Yy @KatyAnton




Root Cause

* Difficult to understand
* Easy to break

* Difficult to test

* Difficult to upgrade

* Increase technical debt

Y @KatyAnton




What is Attack Surface?

K
Sum of the total different points )/

through which a malicious actor {
can try to enter data into or
extract data from an environment.

\

’
g

Y @KatyAnton




Fundamental Security Principle

Minimize the attack surface area

Y @KatyAnton




Components Examples

Example of external components:

* Open source libraries - for example: a logging library
* APIs - for example: vendor APlIs

* Packages by another team within same company

Y @KatyAnton




Example 1: Implement Logging Library

* Third-party - provides logging levels:
* FATAL, ERROR, WARN, INFO, DEBUG.

* We need only:
* DEBUG, WARN, INFO.

Y @KatyAnton




Simple Wrapper

Helps to:

Module
Module
Module

« Expose only the functionality
required.

 Hide unwanted behaviour.
* Reduce the attack surface area.

- Update or replace libraries.
* Reduce the technical debt.

Module

Module

Interface

Y @KatyAnton




Example 2: Implement a Payment Gateway

Scenario:
* Vendor APIs - like payment gateways

« Can have more than payment gateway one in
application

* Require to be inter-changed

Y @KatyAnton




Adapter Design Pattern

» Converts from provided interface Vour Code
to the required interface.
* A single Adapter interface can

work with many Adaptees. Adapter

* Easy to maintain. I I
Third-party code

Y @KatyAnton




Example 3: Implement a Single Sign-On

* Libraries / packages created by another team within
same company

» Re-used by multiple applications
« Common practice in large companies

Y @KatyAnton




Facade Design Pattern

 Simplifies the interaction Foursade Your code
with a complex sub-system

* Make easier to use a poorly
designed API

* |t can hide away the details
from the client.

* Reduces dependencies on
the outside code.

Module

Module Module

Complex sub-system

Y @KatyAnton




Secure Software Starts from Design !

Wrapper Adapter Pattern Facade Pattern
To expose only required To convert from the required To simplify the interaction with
functionality and hide unwanted | interface to provided interface a complex sub-system.
behaviour.

Module
Module Your Code Module
Module

Module \/ ‘ Module
\ / Module \ / Module
- Adapter ' /

/ Facade

Third-Party Library Third-party code Complex sub-system




How often ?

Y @KatyAnton




Rick Rescorla

* United States Army office of British origin
* Born in Hayle, Cornwall, UK

* Director of Security for Morgan Stanley at
WTC

Y @KatyAnton




Security Controls Recap

Y @KatyAnton




Security Controls In Development Cycle

Application Server
Operating System OS Command

Software Application (— o " S
| .
anagemen

Log Exception

Param Encapsulation
' Queries
- Validate Encode
’ L ‘l Input output

TLS TLS

Y @KatyAnton




Final Takeaways

FOCUS On
- i/\'l 0, %= i
Security

Controls




References

* OWASP Top 10 Proactive Controls

https://owasp.org/www-project-proactive-controls/

* OWASP Cheat Series

https://cheatsheetseries.owasp.org/

Y @KatyAnton




@KatyAnton



