
Security Vulnerabilities
Decomposition

Katy Anton

@KatyAnton

OWASP Top 10

@KatyAnton

When the report is published

@KatyAnton

• Software	development	background		

• Project	co-leader	for																													
OWASP	Top	10	Proactive	Controls																																																																																																		
(@OWASPControls)		

• Principle	Application	Security	Consultant

Katy Anton

@KatyAnton

A formal list for of software security weaknesses in:
• architecture
• design
• code

Source:	https://cwe.mitre.org/

 Common Weakness Enumeration

@KatyAnton

Source: https://nvd.nist.gov/vuln/categories/cwe-layout

NVD: CWE Categories

@KatyAnton

Injection Category

@KatyAnton

CWEs in Injection Category

•

CWE-93:		CRLF	Injection	

CWE-74	
Injection

CWE-943:	Improper	Neutr.	of	Special	El	in	Query

CWE-94:		Code	Injection

CWE-91:		XML	Injection

CWE-78:		XSS

CWE-77:		Commmand	Injection

CWE-89:	SQL	Injection

CWE-90:LDAP	Injection

Source:	NVD	

CWE-78:	OS	Cmd	Inj

CWE-78:	Argument	Inj

@KatyAnton

@KatyAnton

Is there another way to look at it?

@KatyAnton

Decompose the Injection

Get / Post Data

File Uploads
HTTP Headers

Database Data

Config files

SQL

HTML

XML

Bash Script

LDAP Query

SQL Parser

HTML Parser

XML Parser

Shell

LDAP Parser

Input Output Parser

Data	interpreted	as	Code

@KatyAnton

Extract Security Controls

Input Output Parser
Vulnerability Encode Output Parameterize Validate Input

XSS R R
SQL Injection R R
XML Injection R R
Code Injection R R
LDAP Injection R R
Cmd Injection R R

Primary Controls Defence in depth

@KatyAnton

(or lack of Intrusion Detection)

Intrusions

@KatyAnton

If a pen tester is able to get into a system
without being detected, then there is

insufficient logging and monitoring in place

@KatyAnton

The security control developers can use
to log security information during the
runtime operation of an application.

Security Controls: Security Logging

@KatyAnton

Good attack identifiers:
1. Authorisation failures
2. Authentication failures
3. Client-side input validation bypass
4. Whitelist input validation failures
5. Obvious code injection attack
6. High rate of function use

The 6 Best Types of Detection Points

@KatyAnton

Request Exceptions
• Application receives GET when expecting POST
• Additional form /URL parameters

Examples of Intrusion Detection Points

@KatyAnton

Authentication Exceptions
• Additional variables received during an authentication

like ‘admin=true’’

• Providing only one of the credentials
The user submits POST request which only contains the
username variable. The password was removed.

Examples of Intrusion Detection Points

@KatyAnton

Input Exceptions
• Input validation failure on server despite client side

validation
• Input validation failure on server side on non-user

editable parameters
• e.q:hidden fields, checkboxes, radio buttons, etc

S

Examples of Intrusion Detection Points

@KatyAnton

Secure Data Handling: Basic Workflow
Application Server
Operating System

Software Application

Param Queries

Encode outputValidate Data

Log Exceptions

@KatyAnton

Data at Rest and in Transit

Sensitive Date Exposure

@KatyAnton

Data

Data Types Encryption Hashing

Data at Rest: Requires initial value
E.q: credit card R

Data at Rest: Doesn’t require initial value
E.q: user passwords R

Data in Transit R

@KatyAnton

How Not to Do it !

Data at Rest: Design Vulnerability example

encryption_key = PBKF2(psswd, salt, iterations, key_length);

In the same folder - 2 file:

The content of password.txt:

@KatyAnton

Strong Encryption Algorithm: AES
Key Management
• Store unencrypted keys away from the encrypted data.
• Protect keys in a Key Vault (Hashicorp Vault / Amazon KMS)
• Keep away from home grown key management solutions.
• Define a key lifecycle.
• Build support for changing algorithms and keys when needed
• Document procedures for managing keys through the lifecycle

Source: https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

Encryption: Security Controls

https://www.vaultproject.io/
https://aws.amazon.com/kms/

@KatyAnton

•

Data in Transit: Security Controls

Application Server

Operating System
Software Application

TLS

TLS

TLS

TLS

@KatyAnton

Using Software Components with Known Vulnerabilities

Third Party Components

@KatyAnton

Apps with at least 1 vulnerable component:
• 85.7% of .Net applications
• 92% of C++ applications

State of Software Security

Source: https://www.veracode.com/state-of-software-security-report

@KatyAnton

• Difficult to understand
• Easy to break
• Difficult to test
• Difficult to upgrade
• Increase technical debt

Root Cause

@KatyAnton

Sum of the total different points
through which a malicious actor
can try to enter data into or
extract data from an environment.

What is Attack Surface?

@KatyAnton

Minimize the attack surface area

Fundamental Security Principle

@KatyAnton

Example of external components:
• Open source libraries - for example: a logging library
• APIs - for example: vendor APIs
• Packages by another team within same company

Components Examples

@KatyAnton

• Third-party - provides logging levels:
• FATAL, ERROR, WARN, INFO, DEBUG.

•We need only:
• DEBUG, WARN, INFO.

Example 1: Implement Logging Library

@KatyAnton

Helps to:
• Expose only the functionality
required.
• Hide unwanted behaviour.
• Reduce the attack surface area.
• Update or replace libraries.
• Reduce the technical debt.

Simple Wrapper

Module

Module

Interface

Module

Module

Module

Third-Party	Library

Module

Module

@KatyAnton

Scenario:
• Vendor APIs - like payment gateways
• Can have more than payment gateway one in
application
• Require to be inter-changed

Example 2: Implement a Payment Gateway

@KatyAnton

• Converts from provided interface
to the required interface.
• A single Adapter interface can
work with many Adaptees.
• Easy to maintain.

Adapter Design Pattern

Your Code

Third-party code

 Adapter

@KatyAnton

• Libraries / packages created by another team within
same company
• Re-used by multiple applications
• Common practice in large companies

Example 3: Implement a Single Sign-On

@KatyAnton

• Simplifies the interaction
with a complex sub-system
•Make easier to use a poorly
designed API
• It can hide away the details
from the client.
• Reduces dependencies on
the outside code.

Façade Design Pattern

Secure Software Starts from Design !

Adapter Pattern
To convert from the required

interface to provided interface

Your Code

Third-party code

 Adapter

Wrapper
To expose only required

functionality and hide unwanted
behaviour.

Module

Module

Interface

Module

Module

Module

Third-Party	Library

Module

Module

Façade Pattern
To simplify the interaction with

a complex sub-system.

Module

Module

Facade

Module

Module

Module

Complex	sub-system

Module

Module

@KatyAnton

How often ?

@KatyAnton

• United States Army office of British origin

• Born in Hayle, Cornwall, UK

• Director of Security for Morgan Stanley at
WTC

Rick Rescorla

@KatyAnton

Security Controls Recap

@KatyAnton

Security Controls In Development Cycle

Application Server
Operating System

Software Application

Param

Queries

Encode
output

TLS

Validate
Input

TLS

TLS

Mo
Mo

Encap

Mo
Mo

Mo

Librar

Mo
Mo

Encapsulation

OS CommandLogs
Log Exception

Param Data

Secure Date

Key
 Management

@KatyAnton

Verify	Early	and	Often

Final Takeaways

CWEs CWEs
Focus on
Security
Controls

which prevent

@KatyAnton

• OWASP Top 10 Proactive Controls
https://owasp.org/www-project-proactive-controls/

• OWASP Cheat Series
https://cheatsheetseries.owasp.org/

References

@KatyAnton

@KatyAnton

Thank you very much

