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Common Weakness Enumeration

A formal list for of software security weaknesses in:
e architecture
e design
e code

Source: https://cwe.mitre.org/
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NVD: CWE Categories
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Source: https://nvd.nist.gov/vuln/categories/cwe-layout
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Injection Category
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CWEs in Injection Category

>

CWE-77:

Commmand Injection

/,|CWE-78: 0S Cmd Inj

CWE-78: Argument Inj

———/ CWE-78:

XSS

CWE-74
Injection

—

CWE-91:

XML Injection

—

CWE-93:

CRLF Injection

———— CWE-94:

Code Injection

>

CWE-943:

Improper Neutr. of Special El in Query

/JCWE-89: sQL Injection

CWE-90:LDAP Injection

Source: NVD
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Is there another way to look at it?
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Decompose the Injection

Data interpreted as Code

Input —> Parser —> Output

Get / Post Data SQL Parser SQL

~ile Uploads HTML Parser HTML

HTTP Headers XML Parser XML
Database Data Shell Bash Script
Config files LDAP Parser LDAP Query
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Extract Security Controls

Parser

Vulnerability Encode Output Parameterize Validate Input
XSS
SQL Injection
XML Injection
Code Injection
LDAP Injection
Cmd Injection

—~ —, —
Primary Controls Defence in depth
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Intrusions

(or lack of Intrusion Detection)
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If a pen tester is able to get into a system
without being detected, then there is
insufficient logging and monitoring in place
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Security Controls: Security Logging

The security control developers can use
to log security information during the
runtime operation of an application.
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The 6 Best Types of Detection Points

Good attack identifiers:

Authorisation failures
Authentication failures
Client-side input validation bypass
Whitelist input validation failures
Obvious code injection attack
High rate of function use

Dl o BN =
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Examples of Intrusion Detection Points

Request Exceptions
e Application receives GET when expecting POST
e Additional form /URL parameters
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Examples of Intrusion Detection Points

Authentication Exceptions
« Additional variables received during an authentication
like ‘admin=true”
e Providing only one of the credentials

The user submits POST request which only contains the
username variable. The password was removed.
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Examples of Intrusion Detection Points

Input Exceptions

 Input validation failure on server despite client side
validation

 Input validation failure on server side on non-user
editable parameters

e e.q:hidden fields, checkboxes, radio buttons, etc
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Secure Data Handling: Basic Workflow

Application Server

Operating System

Log Exceptions

Software Application

Param Queries

Validate Data
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Sensitive Date Exposure

Data at Rest and in Transit
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Data

Data Types Encryption Hashing

Data at Rest: Requires initial value
E.q: credit card

Data at Rest: Doesn’t require initial value

E.q: user passwords

Data in Transit
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Data at Rest: Design Vulnerability example

How Not to Do it !

N the same folder - 2 file:

encrypted-password. txt
password=entities.txt

The contentaf password.txt:
cryptography . séeda=abcd
cryptograptiy.salt=12345
cryptography.iterations=1000
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enrcryption_key = PBKF2(psswd, salt, iterations, key_length);
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Encryption: Security Controls

Strong Encryption Algorithm: AES

Key Management

« Store unencrypted keys away from the encrypted data.

« Protect keys in a Key Vault (Hashicorp Vault / Amazon KMS)
Keep away from home grown key management solutions.
Define a key lifecycle.

Build support for changing algorithms and keys when needed
Document procedures for managing keys through the lifecycle

Source: https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
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https://www.vaultproject.io/
https://aws.amazon.com/kms/

Data in Transit: Security Controls

Application Server

Operating System

Software Application
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Third Party Components

Using Software Components with Known Vulnerabilities
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State of Software Security
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SJFTWARE
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Apps with at least 1 vulnerable component:
e 85.7% of .Net applications
e 927% of C++ applications

Source: : https://www.veracode.com/state-of-softwar urity-report
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Root Cause

* Difficult to understand
* Easy to break

* Difficult to test

* Difficult to upgrade

* Increase technical debt
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What is Attack Surface?

K
Sum of the total different points )/

through which a malicious actor {
can try to enter data into or
extract data from an environment.
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Fundamental Security Principle

Minimize the attack surface area
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Components Examples

Example of external components:

* Open source libraries - for example: a logging library
* APIs - for example: vendor APlIs

* Packages by another team within same company
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Example 1: Implement Logging Library

* Third-party - provides logging levels:
* FATAL, ERROR, WARN, INFO, DEBUG.

* We need only:
* DEBUG, WARN, INFO.
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Simple Wrapper

Helps to:

Module
Module
Module

« Expose only the functionality
required.

 Hide unwanted behaviour.
* Reduce the attack surface area.

- Update or replace libraries.
* Reduce the technical debt.

Module

Module

Interface
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Example 2: Implement a Payment Gateway

Scenario:
* Vendor APIs - like payment gateways

« Can have more than payment gateway one in
application

* Require to be inter-changed
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Adapter Design Pattern

» Converts from provided interface Vour Code
to the required interface.
* A single Adapter interface can

work with many Adaptees. Adapter

* Easy to maintain. I I
Third-party code
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Example 3: Implement a Single Sign-On

* Libraries / packages created by another team within
same company

» Re-used by multiple applications
« Common practice in large companies
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Facade Design Pattern

 Simplifies the interaction Foursade Your code
with a complex sub-system

* Make easier to use a poorly
designed API

* |t can hide away the details
from the client.

* Reduces dependencies on
the outside code.

Module

Module Module

Complex sub-system
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Secure Software Starts from Design !

Wrapper Adapter Pattern Facade Pattern
To expose only required To convert from the required To simplify the interaction with
functionality and hide unwanted | interface to provided interface a complex sub-system.
behaviour.

Module
Module Your Code Module
Module

Module \/ ‘ Module
\ / Module \ / Module
- Adapter ' /

/ Facade

Third-Party Library Third-party code Complex sub-system




How often ?
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Security Controls Recap
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Security Controls In Development Cycle

Application Server
Operating System OS Command

Software Application (— o " S
| .
anagemen

Log Exception

Param Encapsulation
' Queries
- Validate Encode
’ L ‘l Input output

TLS TLS
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Final Takeaways

FOCUS On
- i/\'l 0, %= i
Security

Controls
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