How we went from

being astronauts to

% heing mission|
control

o O VR o Managing systems in an age of

' . .
ol ‘ . dynamic complexity
e e o : ' Laura Nolan

About Laura Nolan

e Not a real astronaut (sorry)
Senior Staff Software Engineer at Slack Dublin
Contributor to Site Reliability Engineering (‘the
SRE book’), Seeking SRE, InfoQ, and quarterly
columnist at USENIX ;login:

e Campaigner for a ban treaty against Lethal
Autonomous Weapons: stopkillerrobots.org

e @lauralifts on Twitter

https://www.stopkillerrobots.org/

Consider cloud reliahility...

Recent Events Details

0!;1 Amazon AP| Gateway (N. Virginia) Increased Error Rates
) Amazon AppStream 2.0 (N. Virginia) Increased Error Rates
Q Amazon Athena (N. Virginia) Increased Error Rates
) Amazon CloudSearch (N. Virginia) Increased Error Rates
@” Amazon CloudWatch (N. Virginia) Increased Error Rates
QL ; Amazon Cognito (N. Virginia) Increased Error Rates
0/‘; Amazon EC2 Container Registry (N. Virginia) Increased Error Rates
;) Amazon Elastic Compute Cloud (N. Virginia) Increased Error Rates
@[: . Amazon Elastic File System (N. Virginia) Increased Error Rates
@,_1 Amazon Elastic Load Balancing (N. Virginia) Increased Error Rates
Q Amazon Elastic MapReduce (N. Virginia) Increased Error Rates
J Amazon Elastic Transcoder (N. Virginia) Increased Error Rates
0/_; Amazon ElastiCache (N. Virginia) Increased Error Rates

Googie CIOUG 1S 3 Sulte Of CHUD COMPRANG Servies for Google Cloud
Geveiopers, offering Infrastnucture as a sefvice, Platform as Q

2 senvice ang Serveress Computing features.

‘Americas Asia

PRODUCTS GLOBAL NORTH EUROPE | WEST EUROPE UK WEST UK SOUTH
Web Apps A A v v
Cloud Sarvices A A v v
5QL Database A A v v
Virtual Machines A A v v
Visual Studio Team Services A

cdwan@gw:~ — ssh — 80x24

[cdwan@gw ~]$% uptime =
©9:13:38 up 1036 days, 15:28, 2 users, load average: 0.11, 0,22, 0,19
[cdwan@gw ~]% l

Image: ChrisDag@Flickr [
CCBY 2.0 license

The old ways

Configuring servers done by
hand, or semi-automated
Humans managing
loadbalancer backend pools
No autoscaling - things
already sized for peak

No job orchestration
Everything was pretty static

Times have

Automate everything:

e Job orchestration

e Autoscaling number of
instances

e Routing, failover and balancing

traffic

Other pressures

Better performance and latency,
especially tail latency

Reduce repetitive toil of
managing a large fleet

React faster to routine hardware
failures

More consistency in production
Avoid compliance risks related
to engineers touching
production

COMMUNICATIONS
CARRIER

FLANGE

SUNGLASSES POCKET

wCL

PRESSURE GAGE

ENTRANCE SLIDE
FASTENER FLAP

DOSIMETER POCKET

MEDICAL INJECTION FLAP

UTC CuUNNECTOR

SCISSORS POCKET

CHECKLIST POCKET
(DETACHABLE)

PRESSURE HELMET
ASSEMBLY

. HELMET DISCONNECT

ELECTRICAL
CONNECTOR

PENLIGHT
POCKET

PR : PRESSURE
- GLOVE

- ‘ UTILITY POCKET

2ed DATA LIST
POCKET
(DETACHABLE)

. ' \ /IVCL B80OT
R %

Figure I-4. - Intravehicular pressure garment assembly.

The Dynamic Gontrol
Plane Architecture
Pattern

ny’

-,

A common architectural pattern in
software (and network) operations
that arises in order to address global
optimisation problems.

Signal aggregator

Service pool
Service
instance

Autoscaling group

|

|

Ty |

w |
(& I |
s | !
mm “
H]
HEE "
o | @ |
2l3 |
S l— |
H |

S I m
+— QO Q |
.m 0l © o |
o c| © c i
= ol "
Sl v g - "

c |

W |

o) |

B "

Q. \

=3 |

® |

™ |

(&} |

o) :

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

- —————————— - - - - -

Kubernetes cluster

-

Control Plane

ll

Global controller

Signal aggregator

instance

II

Signal aggregator

instance

Global DNS Loadbalancer

llllllllll

[l I
" P
_ | P!
| 4 R
_ 1
! N o | | m
=P =2 ' ol
_ =8 bl
S “ - v ©) !
;| | Gl
— | | .
s P N
2 “ |
© S |
® . [|
_ 1
o : |
-l ! “
| IH :
_ 1
: 5 |
1 i) |
|5 m m
1 e — “
m mu m _
1
“ gAf a2 ® “
: © 2| g 8 “
| T g 8¢ “
“ < sl =8 ||| "
(2]
! 2 o| @@ || "
T~ o N w £ “
_ 1
s 8 m
| - | _
o] © ! — “
m c T
§ "
8| § ;s |
3| & |
o | = m |
(O] o _ m
s — |
m o) < |
| 5, 5 “
! > tl— S . _
| S [0)] D O “
| e 8| 8¢ “
“ 5 sl 28 ||| |
! R 5| &8 _
“ & n|l g "
| !
_ 1
_ 1
N |
c A "
e " .
- \ . _
1 . _
8 “ -
S “ -
© ! | m
o : " |
© ' “ “
3 5
: &
| . “
_ L
1
:
1

SDN WAN

||

Optimiser and BW broker

Collection
Network hardware

||

Collection
Network hardware

The Dynamic Gontrol

Plane: not just any old =
u - LR)
automation & p s
X (=
g
This pattern tends to arise '
specifically in systems that control /

critical parts of production and are
doing zonal or global configuration,
optimisation and balancing.

We don t run the systems anymore.

‘ s,;&.
e s e
e Sl

It is much harder for us to fully understand our ;ystemgin

Dynamic control plane
incidents.

& . . . (

December 24 2012: AWS Elastic LB

e Twas the night before Christmas, and API calls related to managing new or
existing LBs started to throw mysterious errors

e Running ELBs seemed to be OK

e “The team was puzzled as many APIs were succeeding (customers were able
to create and manage new load balancers but not manage existing load
balancers) and others were failing.”

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

December 24 2012: AWS Elastic LB

e After more than four hours, they noticed that running LBs were OK, unless
someone tried to make a config update, or they scaled up or down

e Scaling workflows were disabled once they figured that out

e “/t was when the ELB technical team started digging deeply into these
degraded load balancers that the team identified the missing ELB state data
as the root cause of the service disruption.”

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

December 24 2012: AWS Elastic LB

e The ultimate fix was a data recovery process to restore the lost data and
merge in changes since the data loss occurred. Full recovery from the incident
took around 24 hours.

e Postincident action item was to lock down write access to the ELB control
plane state.

e This incident showcases the difficulty of debugging problems in control plane
software. We trust them to be stewards of critical system state and it can be
very painful when that fails.

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

Operators need mental
models of both the
system and the

11 April 2016: GCE

e Google Compute Engine (GCE) lost external network connectivity for 18
minutes.

e An unused IP block is removed from a network configuration and the control
system that propagates network configurations begins to process it.

e A race condition triggers a bug which removes all GCE IP blocks.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

11 April 2016: GCE

e The configuration was sent to a canary system (a second dynamic control
system).

e The canary system correctly identified that there was a problem.

e But the signal that the canary system sent back to the network configuration
propagation system wasn’t correctly processed.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

11 April 2016: GCE

The network configuration is rolled out to other sites in turn. GCE IP blocks are
advertised (over BGP) from multiple sites via IP Anycast.

This means that probes to these IPs continued to work until the last site was
withdrawn.

The rollout process therefore lacked critical signal on the effect of its actions
on the health of GCE.

This is a classic complex systems failure involving multiple bugs and latent
problems.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

Testing is a real
challenge.

June 2, 2019: Google network outage

Google Cloud projects running services in multiple US regions experienced
elevated packet loss as a result of network congestion for a duration of up to 4
hours 25 minutes.

Google's machines are segregated into multiple logical clusters, each with
their own dedicated cluster management software.

A maintenance event began in a single physical location and was the trigger
for the outage.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage

e Maintenances are common and automated.

e In the case of this specific kind of maintenance, the software control plane for
the network was incorrectly configured to be turned off.

e The misconfiguration extended to the network control plane in the entire
region, not just one physical location.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage

Without the control jobs, the network will ‘fail static’, meaning that it’'ll continue
to use its current configuration and work for a period of time.

However after several minutes the network capacity was withdrawn.
The incident was root-caused relatively quickly.

However, because all instances of the network control plane had been
descheduled, data had been lost and needed to be rebuilt.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage

This event required multiple misconfigurations, bugs and permissions
problems in order to occur.

It involved one dynamic control plane (the automation software) operating on
at least two others (the network control plane itself and the cluster
management control plane).

Again - very hard to predict these kinds of sequences of events.

Like the first AWS incident it illustrates the pain that data loss can cause.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

Testing
failsafe/fail static
behaviour is scary,
and easy to
neglect.

Segment Tang

Leak Test Port
Plug anc Packing

<\\\\\\\\\\\\\\\\\\\\\\\\\\\\\§

7,

Grease Bead 7

./

Pin
Retainer Clip

V7, ////<\‘:~
WY

\
.

I,

Pin
Retainer Bandﬂ |

L

Clevis Pin -

-

Pin Retainer' Ban
Cork Insulaticn

Segment Clevis

Figure 14

\\\}\\

%,

Propeliant

Insulation

U/ Primary C-Ring
)i

3 Propellant
l/ Relief Flap
i

AFT Fzacing
Inhibitor

\ /

N rrwi 7
N 7777
N N1y /).
N y A l, //
\ \NLLLL '/

R S N [
- \ Zinc Chromate
\ PFutty

/ Insulation
\

u

D

/orwa r\d Facing

Inhibitor
/ " Insulation

Propellant

Soliq Rocket Motor cress section snows positons of tang,
c'evis and O-rings. Putty lines the joint on the side toward the

propellant.

-

= ﬁha

“

Use reglonal or zonal control systems

P-..-.- -

where feas:hle

-

»

LY (N

> 3 A =
BENERENR S st

g 2 4 ._
23 33N B RN PR - |
» » -n.. L . . e/ e o . ‘u..wo _
.-n... o 1}
.A-
“
i
L
‘<
. ‘ |
$-0¢ 9 3
‘. ‘ |
L
. ‘
g ¢ 8 0
. ‘
“
L) «
g 60 0 |
‘ ‘
.A- n
‘
BRERW s L.
‘ ‘ j [
G ’ !
g ¢V

20 53530335 ¥ ERIIOCRATRIE
P23 2 0 PR EE R R
202) P FFEREEE R

™y

-]

ucti

- e we e e ww
- ewe e e e e e
~

-

FTACE

IMENT
BRAKE BEAMS

xod

--.-‘..........
UL) » L
QNI M T o«

 MOK.RWTL

]
! »
) .”. oh b o

’
'
.

")
) -.- -- -.-.v. Hv

..—
’

Plan for time needed
for operators to stay
familiar with the
underlying
operations.

Put guardrails
around your
control systems

i
g5
hy
i

(N ‘

&,._4 @!
S’

[B |
. |
HERE NN
. x.':"ﬁ.J

€& @
£y,

Oy i .}’

yhe one day we

:
2
S
B
L
s

We’re hiring!

a2 slack

Slack is used by millions of people every day.
We need engineers who want to make that experience
as reliable and enjoyable as possible.

https://slack.com/careers

Questions?

Twitter: @lauralifts

