
How we went from
being astronauts to

being mission
control

Managing systems in an age of
dynamic complexity

Laura Nolan

● Not a real astronaut (sorry)
● Senior Staff Software Engineer at Slack Dublin
● Contributor to Site Reliability Engineering (‘the

SRE book’), Seeking SRE, InfoQ, and quarterly
columnist at USENIX ;login:

● Campaigner for a ban treaty against Lethal
Autonomous Weapons: stopkillerrobots.org

● @lauralifts on Twitter

About Laura Nolan

https://www.stopkillerrobots.org/

Consider cloud reliability...

Image: ChrisDag@Flickr
CC BY 2.0 license

● Configuring servers done by
hand, or semi-automated

● Humans managing
loadbalancer backend pools

● No autoscaling - things
already sized for peak

● No job orchestration
● Everything was pretty static

The old ways

Times have
changed.

Automate everything:

● Job orchestration
● Autoscaling number of

instances
● Routing, failover and balancing

traffic

Other pressures
● Better performance and latency,

especially tail latency
● Reduce repetitive toil of

managing a large fleet
● React faster to routine hardware

failures
● More consistency in production
● Avoid compliance risks related

to engineers touching
production

The Dynamic Control
Plane Architecture
Pattern

A common architectural pattern in
software (and network) operations
that arises in order to address global
optimisation problems.

Autoscaling group

Kubernetes cluster

Global DNS Loadbalancer

SDN WAN

The Dynamic Control
Plane: not just any old
automation

This pattern tends to arise
specifically in systems that control
critical parts of production and are
doing zonal or global configuration,
optimisation and balancing.

Now we are mission control.
We don’t run the systems anymore.
We build and run the systems that run the systems.

Now we are mission control.
It is much harder for us to fully understand our systems in
production..

Dynamic control plane
incidents.

No judgments.

December 24 2012: AWS Elastic LB
● Twas the night before Christmas, and API calls related to managing new or

existing LBs started to throw mysterious errors

● Running ELBs seemed to be OK

● “The team was puzzled as many APIs were succeeding (customers were able
to create and manage new load balancers but not manage existing load
balancers) and others were failing.”

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

December 24 2012: AWS Elastic LB
● After more than four hours, they noticed that running LBs were OK, unless

someone tried to make a config update, or they scaled up or down

● Scaling workflows were disabled once they figured that out

● “It was when the ELB technical team started digging deeply into these
degraded load balancers that the team identified the missing ELB state data
as the root cause of the service disruption.”

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

December 24 2012: AWS Elastic LB
● The ultimate fix was a data recovery process to restore the lost data and

merge in changes since the data loss occurred. Full recovery from the incident
took around 24 hours.

● Post incident action item was to lock down write access to the ELB control
plane state.

● This incident showcases the difficulty of debugging problems in control plane
software. We trust them to be stewards of critical system state and it can be
very painful when that fails.

See: https://aws.amazon.com/message/680587/

https://aws.amazon.com/message/680587/

Operators need mental
models of both the
system and the
automation.

11 April 2016: GCE
● Google Compute Engine (GCE) lost external network connectivity for 18

minutes.

● An unused IP block is removed from a network configuration and the control
system that propagates network configurations begins to process it.

● A race condition triggers a bug which removes all GCE IP blocks.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

11 April 2016: GCE
● The configuration was sent to a canary system (a second dynamic control

system).

● The canary system correctly identified that there was a problem.

● But the signal that the canary system sent back to the network configuration
propagation system wasn’t correctly processed.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

11 April 2016: GCE
● The network configuration is rolled out to other sites in turn. GCE IP blocks are

advertised (over BGP) from multiple sites via IP Anycast.

● This means that probes to these IPs continued to work until the last site was
withdrawn.

● The rollout process therefore lacked critical signal on the effect of its actions
on the health of GCE.

● This is a classic complex systems failure involving multiple bugs and latent
problems.

See: https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

Challenges: Testing Testing is a real
challenge.

June 2, 2019: Google network outage
● Google Cloud projects running services in multiple US regions experienced

elevated packet loss as a result of network congestion for a duration of up to 4
hours 25 minutes.

● Google's machines are segregated into multiple logical clusters, each with
their own dedicated cluster management software.

● A maintenance event began in a single physical location and was the trigger
for the outage.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage
● Maintenances are common and automated.

● In the case of this specific kind of maintenance, the software control plane for
the network was incorrectly configured to be turned off.

● The misconfiguration extended to the network control plane in the entire
region, not just one physical location.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage
● Without the control jobs, the network will ‘fail static’, meaning that it’ll continue

to use its current configuration and work for a period of time.

● However after several minutes the network capacity was withdrawn.

● The incident was root-caused relatively quickly.

● However, because all instances of the network control plane had been
descheduled, data had been lost and needed to be rebuilt.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

June 2, 2019: Google network outage
● This event required multiple misconfigurations, bugs and permissions

problems in order to occur.

● It involved one dynamic control plane (the automation software) operating on
at least two others (the network control plane itself and the cluster
management control plane).

● Again - very hard to predict these kinds of sequences of events.

● Like the first AWS incident it illustrates the pain that data loss can cause.

See: https://status.cloud.google.com/incident/cloud-networking/19009

https://status.cloud.google.com/incident/cloud-networking/19009

Challenges: Large Blast RadiusBlast radius may
be large.

Testing
failsafe/fail static
behaviour is scary,
and easy to
neglect.

What can we do?

Use regional or zonal control systems
where feasible

Test them at least as carefully as your
main production systems

Plan for time needed
for operators to stay

familiar with the
underlying
operations.

Put guardrails
around your
control systems

Sometimes
humans are

better.

Weigh up the use
of each dynamic

control plane
with care

Make your
control systems
easily
observable and
overridable by
humans

And maybe one day we’ll
build a cloud with better
uptime than a single
machine...

We’re hiring!

Slack is used by millions of people every day.
We need engineers who want to make that experience

as reliable and enjoyable as possible.

https://slack.com/careers

Questions?
Twitter: @lauralifts

