)

() { that.to(pos)

ftobr'totar i
,t‘.”(eé §t0f"
got?
)i oo
$old/ < 5rrBY()’ '
4107~ = 5(‘t0t31)i 4
yas/(; etEx‘teﬂSl g
rde xtenslh’" g [protot)’Pe L
gsof xtel“Sla = Carou o parent(). ol .
£his pod® this rows jex(ite this-?
gre=” gkey 3“’31“3) { this-ﬁte‘“S 1
(if‘es“lt ' gde'])) {
e 5\/31“9[& 1 } . . getive
(Z;Zt(aluel cote') ; ForDlreCt‘O functioﬂ (dwahon, act??) {
1 & ey Cafousel-PmtOtype'get = : i 1 1
gcode $va el kY /r selt3 dir‘e(tion rev 5
1 l). va thlS etI emIﬂdeX(aCtlv)
i : fig et($code ' sort,or”der ’ var actlveIndex o delta) th gitens leng’fh
gsort “d“"[f‘ke” $eh* e yar itemIndex pivelnde® '
git q(itemIndex)
ess gsort- orders oRT_ASCs $rtsult 2 }
Onst’ﬁl‘ea ”arom_l protoLyp 0 ﬂmftion (DG:?) {
»*t\ul‘ﬂ rned
yar that this
5 oﬁ- $res sul "‘t < .
r Jar active this.get tite mIndex(this.$act1ve th15.$element fFind(’ item. active
Wri tl
ngtlus $1tems 1) pos)
(this.s* I .
his- QTlcjlﬂE this. gelement. one :1d,b5,cﬁ,o,,qel] cnetion (
ne ;,y *’hl\ PdUbv() \'Cle(
his.$items. e (pw)}

|N|(:)R‘A" LINES
STRUCTURE CO
DE

o]

1
!

)
/

It's time for a confession:

DevOps is still in the stone ages

- .

‘We are trying to build this...

Using this.

If you just read the headlines, it
all sounds so cutting edge...

Kubernetes, Docker, serverless, microservices,
Infrastructure as code, distributed tracing, big
data systems, data warehouses, data lakes,
chaos engineering, zero-trust architecture,
streaming architecture, immutable
Infrastructure, service discovery, service
meshes, NoSQL, NewSQL, ChatOps, HugOps,
NoOps, DevSecOpslLeanSREAgiIleWTFBBQ, ...

But to me, it doesn't fee/cutting
edge. It feels more like...

Isdevops

this

1

Hthisisdevops

1

Hthisisdevops

Here's something we don't
admit often enough:

Building production-grade
Infrastructure is hard.

And stressful.

And time consuming.

Some rough numbers:

Production-grade infrastructure

Project Examples Time estimate

Managed service ECS, ELB, RDS, ElastiCache 1 — 2 weeks
Distributed system (stateless) nginx, Node.js app, Rails app 2 — 4 weeks
Distributed system (stateful) Elasticsearch, Kafka, MongoDB 2 — 4 months

Entire cloud architecture Apps, DBs, CI/CD, monitoring, etc. 6 — 24 months

Fortunately, it's getting a
little bit better

($this config

$this

)

e

e.to fi pos
;5. $active this,$element fFind(’ item. active

var activeIndex
) || pos)
’ lid.bs.carousel , function (){ that.to(pas) 1

this.$element.one(5

.. sliding)
this.pause().cycle

(activeIndex pos
this.slide(pos activelndex 'next’ "prev’ this.$items.eq(pos))

e.pause function () {

\\[

L
115.0d

onetrondl love
alm::.-: nd | love: manage -
) everything as code

gxe5

fyncl
(o tior ke
ens D ec 1

; ,t" -r8Y jon- 1et th
$1P3' o tenf,l type-6 'p £ive) 1eng
er ph(\ 0 ectlo tItemInde (aC h $ tems:

ve)
¥

Manual server config > Conflguratlon management
Manual app conflg > Conflguratlon flies

Manual builds > Continuous integration' =~
Manual deployment - Continuousdelivery
Manual testing - Automated testing

Manual DBA work - Schema migrations
Manual specs - Automated specs (BDD)

The benefits of code:

Automation
Version control
Code review

. Testing

5 Documentation
6. Reuse

NOWN -

At Gruntwork,
we've created a
reusable library of
infrastructure code

W Terraform
40 aAngG

BASH @ python’

EEEEEEEEEEEEEEEEEEEE

Primarily written in Terraform, Go,
Python, and Bash

Microsoft Azure Vo Q Couchbase

t
e redis *docker

Google Cloud amazon O
O 02.: 3 web services New Relic.
Open = icieci @ R ‘
amazon W MySGll u

Elastic
Load Balancer

v v;ult cloudfront

AT .
e Iravis Cl

U
|

Off-the-shelf, battle-tested solutions for AWS, Docker, VPCs, VPN,
MySQL, Postgres, Couchbase, ElasticSearch, Kafka, ZooKeeper,
Monitoring, Alerting, secrets management, Cl, CD, DNS, ...

3+ years of development.
300,000+ lines of code.

In this talk, I'll share what we
learned along the way!

I'm
Yevgenl
BriKman

_—
ybrikman.com

Co-founder of
Gruntwork

gruntwork.io

.
.
=
2
=
%}
Q0
2
5
=
5
Q

ueunjug

s ATTIFH.0

Outline

1. Checklist
2. Tools

3. Modules
4, Tests
5. Releases

2. Tools
3. Modules

oty o R N o 3

DevOps newbies are always
shocked by these numbers:

Production-grade infrastructure

Project Examples Time estimate

Managed service ECS, ELB, RDS, ElastiCache 1 — 2 weeks
Distributed system (stateless) nginx, Node.js app, Rails app 2 — 4 weeks
Distributed system (stateful) Elasticsearch, Kafka, MongoDB 2 — 4 months

Entire cloud architecture Apps, DBs, CI/CD, monitoring, etc. 6 — 24 months

How can it possibly take that
long??

TWO main reasons:

Reason it takes so long
Yak shaving

Yak shaving: a seemingly
endless series of small tasks
you have to do before you
can do what you actually
want.

® O ® /59 pon't Shave That Yak! [Seth's x |\

Yevgeniy

C‘ ‘ & Secure \ https://seths.blog/2005/03/dont_shave_that/

Q %|§ i

ﬁ SETH'S BLOG

Yak Shaving is the last step of a series of steps that occurs when

“Oops, the hose is still broken from the winter. I’ll need to buy a
new one at Home Depot.”

“But Home Depot is on the other side of the Tappan Zee bridge
and getting there without my EZPass is miserable because of the
tolls.”

“But, wait! I could borrow my neighbor’s EZPass...”

“Bob won’t lend me his EZPass until I return the mooshi pillow
my son borrowed, though.”

“And we haven’t returned it because some of the stuffing fell out
and we need to get some yak hair to restuff it.”

And the next thing you know, you’re at the zoo, shaving a yak, all
SO you can wax your car.

you find something you need to do. “I want to wax the car today.”

Reason it takes so long
It's a long checklist!

Introducing:

The production-grade
Infrastructure checklist

Production-grade infrastructure checklist, part 1/4

Description

Example tools

Install

Configure

Provision

Deploy

Install the software binaries and all dependencies.

Configure the software at runtime: e.g., configure port
settings, file paths, users, leaders, followers, replication,
etc.

Provision the infrastructure: e.g., EC2 Instances, load
balancers, network topology, security groups, IAM
permissions, etc.

Deploy the service on top of the infrastructure. Roll out
updates with no downtime: e.g., blue-green, rolling, canary
deployments.

Bash, Chef, Ansible,
Puppet

Bash, Chef, Ansible,
Puppet

Terraform,
CloudFormation

Scripts, Orchestration
tools (ECS, K8S, Nomad)

Production-grade infrastructure checklist, part 2/4

Description Example tools
S rit Encryption in transit (TLS) and on disk, authentication, ACM, EBS Volumes,
) authorization, secrets management, server hardening. Cognito, Vault, CiS
Monitori Availability metrics, business metrics, app metrics, server, CloudWatch, DataDog,
onitoring metrics, events, observability, tracing, alerting. New Relic, Honeycomb
L Rotate logs on disk. Aggregate log data to a central CloudWatch Logs, ELK,
ogs location. Sumo Logic, Papertrail
Backup and Make backups of DBs, caches, and other data on a RDS, ElastiCache, ec2-

restore scheduled basis. Replicate to separate region/account. snapper, Lambda

Production-grade infrastructure checklist, part 3/4

Description Example tools

VPCs, subnets, static and dynamic IPs, service discovery, 1P, [EN &, VPEE:

Networking service mesh, firewalls, DNS, SSH access, VPN access. NalOEED SACSH RISty
OpenVPN
Hiah ilabilit Withstand outages of individual processes, EC2 Instances, Multi AZ, multi-region,
Igh avaiiability services, Availability Zones, and regions. replication, ASGs, ELBs

Scale up and down in response to load. Scale horizontally RS, eplieiion.

Scalability : . sharding, caching, divide
(more servers) and/or vertically (bigger servers). and congquer
BT T e Optimize CPU, memory, disk, network, GPU and usage. Dynatrace, valgrind,

Query tuning. Benchmarking, load testing, profiling. VisualVM, ab, Jmeter

Production-grade infrastructure checklist, part 4/4

Description

Example tools

Cost optimization

Documentation

Tests

Pick proper instance types, use spot and reserved
instances, use auto scaling, nuke unused resources

Document your code, architecture, and practices. Create
playbooks to respond to incidents.

Write automated tests for your infrastructure code. Run
tests after every commit and nightly.

ASGs, spot instances,
reserved instances

READMEs, wikis, Slack

Terratest

Key takeaway: use a checklist to build
production-grade infrastructure.

Production Readiness Checklist

Are you ready to go to prod on AWS? Use this checklist to find out.

Networking
®m SetupVPCs [more]
®m Setupsubnets [more]
m Configure Network ACLs [more]
m Configure Security Groups [more]
m Configure Static IPs [more]
m Configure DNS using Route 53 [more]
Security
m Configure encryption in transit [more]
m Configure encryption at rest [more]
®m Setup SSH access [more]
m Deploy a Bastion Host [more]

m Deploya VPN Server [more]

Full checklist: gruntwork.io/devops-checklist/

2. Tools
3. Modules

oty o R N o 3

What tools do you use to
Implement that checklist?

We prefer tools that:

O U AN

Define infrastructure as code

Are open source & popular
Support multiple providers
Support reuse & composition
Require no extra infrastructure
Support immutable infrastructure

Here's the toolset we've found
Mmost effective as of 2019:

- ¥ Terraform

Networking, Load Balancers, Databases, Users, Permissions, etc

1. Deploy all the basic
infrastructure using Terraform

VM VM VM VM VM
W N P O N e
~
V¥ Terraform

Networking, Load Balancers, Databases, Users, Permissions, etc

2. Configure the VMs using Packer

—————————————————————————————————————

| Docker
| Cluster

N EN SRR -

~
V¥ Terraform

Networking, Load Balancers, Databases, Users, Permissions, etc

3. Some of the VMs form a cluster
(e.g., ECS or Kubernetes cluster)

Docker Container
Cluster
Container Container

&

docker

il Packer

" Terraform

|
|
|
|
|
|
:
1 Container Container Container
|
|
|
|
|
|
|
|

Networking, Load Balancers, Databases, Users, Permissions, etc

4. We use that Docker cluster to
run Docker containers

| |
} Docker Container
i Cluster
Container Container
Container Container

ﬁ pgthonm

ssssssssssssssssssss

|
|
|
|
|
|
|
Container |
|
|
|
|
|
|
|

Networking, Load Balancers, Databases, Users, Permissions, etc

o

5. Under the hood: Bash, Go, and
Python hold everything together

Important note:

EEEEEEEEEEEEEEEEEEE

&8

docker

il Packer pgthon”

We find these tools useful...

But tools are not enough.
You must change behavior too.

o =

(@

Old way: make changes
directly and manually

@=A=" =

New way: make changes
indirectly and automatically

(B=> "

Learning these takes time

o =

(@

More time than making a
change directly...

If you make changes manually,
the code will not reflect reality.

8:>n:>xn:>§

And the next person to try to
use it will get errors

o =

(@

So then they'll fall back and
make manual changes

@
@
s
o > X

But making manual changes
does not scale

This does

Key takeaway: tools are not enough.
You also need to change behavior.

2. Tools
3. Modules

oty o R N o 3

It's tempting to define your entire
infrastructure in 1 file / folder...

Downsides: runs slower; harder to understand;
harder to review (plan output unreadable);
harder to test; harder to reuse code; need admin
permissions; team concurrency limited to 1...

Also, a mistake anywhere
could break everything!

Large modules considered
harmful.

t

IS
ironmen

for each env

fo]g

What you really want
lat

1ISO

And for each “component”

Gruntwork
Reference
Architecture

Take you r architecture...

() ciBtocrar.co

Gruntwork
Reference

Architec -
module

And break it into small, reusable,
standalone, tested modules

live
L dev
L stage
L prod

Break architecture down by environment

live

L dev

L vpc

L mysql

L frontend
L stage

L vpc

L mysql

L frontend
L prod

L vpc

L mysql

L frontend

Break environments down by infrastructure type

live mo?ules

L dev vpC
L vpcC L mysql
L mysql L microservice
L frontend

L stage
L vpc
L mysql
L frontend

L prod
L vpc
L mysql
L frontend

Implement infrastructure in modules

live

L dev

L vpc

L mysql

L frontend
L stage

L vpc

L mysql

L frontend
L prod

L vpc

L mysql

L frontend

modules
L vpc
L mysql
L microservice

gruntwork-io
L asg
L alb
L ssh

Build complex modules from

simpler modules

L Terraform Module Registry | X

& C' @ Secure | https://registry.terraform.io/modt

HashiCor

W Terraform | woduie registry

Vault AWS Module

This repo contains a Module for how to deploy a Vault cluster on AWS using Terraform. Vault
is an open source tool for managing secrets. This Module uses S3 as a storage backend and a
Consul server cluster as a high availability backend:

Vault
Architecture

xample: Vault Modules

terraform-aws-vault
L modules
L examples
L test
L README . md

Typical repo has three key folders:
/modules, /examples, /test

terraform-aws-vault
L modules
L install-vault
L pun-vault
L vault-cluster
L vault-elb
L vault-security-group-rules
L examples
L test
L README . md

/modules: implementation code, broken
down into standalone sub-modules

terraform-aws-vault

L modules

L install-vault
L install-vault.sh

L pun-vault
L vault-cluster
L vault-security-group-rules
L vault-elb

L examples

L test

L PrErARATE g |

install-xxx: sub-module to install the
software (e.g., in Packer or Docker)

terraform-aws-vault

L modules
L install-vault
L pun-vault

L run-vault.sh

L vault-cluster
L vault-security-group-rules
L vault-elb

L examples

L test

run-xxx: sub-modaule to launch the
software during boot (e.g., in User
Data)

terraform-aws-vault
L modules
L install-vault
L pun-vault
L vault-cluster
L main.tf
L vault-security-group-rules
L vault-elb
L examples
L test

xxx-cluster: sub-module to deploy
infrastructure (e.g., into an ASQG)

terraform-aws-vault
L modules
L install-vault
L pun-vault
L vault-cluster
L vault-security-group-rules
L main.tf
L vault-elb
L main.tf
L examples
L test

xxx-yyy: sub-modules with shareable
components (e.g., Security Group rules)

variable "cluster_name"” {
description = "Name to use for the Vault cluster”

¥

variable "vpc id" {
description = "ID of the VPC to use”
}

variable "allowed inbound cidr blocks" {
description "IPs allowed to connect to Vault®
type h e

Each sub-module exposes variables for
configuration and dependencies

ble sub-modules

igura

Small, conf

make code reuse possible

d compose

Ine an
them any way you want!

As you can comb

terraform-aws-vault

L modules

L examples
L vault-with-elb
L vault-s3-backend
L vault-ami

L test

L README . md

/examples: Runnable example code for
how to use the sub-modules

terraform-aws-vault
L modules
L examples
L vault-with-elb
L main.tf
L vault-s3-backend
L main.tf
L vault-ami
L test
L README . md

Some examples are Terraform code

terraform-aws-vault
L modules
L examples
L vault-with-elb
L vault-s3-backend
L vault-ami
L vault.json
L test
L README . md

Some examples are Packer templates
or Dockerfiles

terraform-aws-vault
L modules
L examples
L test
L vault with _elb test.go
L vault s3 backend test.go
L README .md

/tests: Automated tests for the sub-
modules.

terraform-aws-vault
L modules
L examples
L vault-with-elb
L vault-s3-backend
L test
L vault with _elb test.go
L vault s3 backend test.go
L README . md

Typically, our tests deploy & validate
each example! More on this later.

Key takeaway: build infrastructure
from small, composable modules.

2. Tools
3. Modules

iy o R N o 3

Infrastructure code rots very
quickly.

Infrastructure code without
automated tests is broken.

For general-purpose languages,
we cah run unit tests on localhost

¥ Terraform

For infrastructure as code tools,
there is no “localhost” or “unit”

Therefore, the test strategy Is:

1. Deploy real infrastructure
2. Validate it works
3. Undeploy the infrastructure

Open sourcing Terratest: a swiss army
knife for testing infrastructure code

Tools to test Terraform, Packer, Docker, AWS, and much more

We write these integration tests in
Go using Terratest (open source!)

Terratest philosophy: how would
you test it manually?

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

terraform.Destroy(t, terraformOptions)
terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

Typical test structure

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

Specify where the code lives

terraform.InitAndApply(t, terraformOptions)

Run terraform init and
terraform apply to deploy

validateServerIsWorking(t, terraformOptions)

Validate the infrastructure
works as expected

aws .GetPublicIpsOfEc2Instances(t, ids, region)
http.GetWithRetry(t, url, 200, expected, retries, sleep)

ssh.CheckSshCommand(t, host, "vault operator init")

Terratest has many tools built-
in for validation

terraform.Destroy(t, terraformOptions)

At the end of the test, run
terraftorm destroy to clean up

Note: tests create and destroy
lots of resources!

Pro tip #1: run tests in completely
separate “sandbox” accounts

® © ® /) gruntwork-iojcloud-nuke: A ¢ % Yevgeniy

& C | & GitHub, Inc. [US] | https://github.com, -4l
gruntwork-io / cloud-nuke © Unwatch~ 8 * Star 66 YFork 1
<> Code Issues 5 Pull requests 0 Projects 0 Wiki Insights Settings
A tool for cleaning up your cloud accounts by nuking (deleting) all resources within it https://gruntwork.io/ Edit
Add topics
README.md ’
cloud-nuke

This repo contains a CLI tool to delete all cloud (AWS, Azure, GCP) resources in an account. cloud-nuke was created
for situations when you might have an account you use for testing and need to clean up left over resources so you're
not charged for them. Also great for cleaning out accounts with redundant resources.

The currently supported functionality includes:

AWS

Deleting all Auto scaling groups in an AWS account

Deleting all Elastic Load Balancers (Classic and V2) in an AWS account

Deleting all EBS Volumes in an AWS account

Deleting all unprotected EC2 instances in an AWS account

Deleting all AMIs in an AWS account

Deleting all Snapshots in an AWS account

Deleting all Elastic IPs in an AWS account

Pro tip #2: clean up left-over
resources with cloud-nuke.

eZe
Tests

/ Integration Tests \
/ Unit Tests \

Test pyramid

eZe

Tests
Cost,
brittleness, Integration Tests
run time
Unit Tests

As you go up the pyramid, tests get
more expensive, brittle, and slower

How the test pyramid works
with infrastructure code:

eZe
Tests

/ Integration Tests \
-

Individual < Unit Tests
modules

.

Unit tests for infrastructure: test
individual sub-modules (keep ‘em small!)

eZe
Tests

.
Multiple < Integration Tests
modules

\.

Individual Unit Tests
modules

Integration tests for infrastructure: test
multiple sub-modules together.

Entire

stack) e2e
Tests
\.
Multiple Integration Tests
modules
Individual Unit Tests
modules

E2E tests for infrastructure code:
test entire environments (stage, prod).

30 - 120+

i 2e
minutes =

Tests
>~ 60 Integration Test
inUtes ntegration Tests
1-20

i Unit Tests

minutes

Note the test times! This is another
reason to use small modules.

Key takeaway: infrastructure code
without automated tests is broken.

2. Tools
3. Modules

oty o R N o 3

Let's put it all together:
checklist, tools, modules, tests

Description

Example tools

Encryption in transit (TLS) and on disk, authentication,

Security authorization, secrets management, server hardening.
Monitorin Availability metrics, business metrics, app metrics, server,
onitoring metrics, events, observability, tracing, alerting.
L Rotate logs on disk. Aggregate log data to a central
ogs location.
Backup and Make backups of DBs, caches, and other data on a
restore scheduled basis. Replicate to separate region/account.

1. Go through the checklist

ACM, EBS Volumes,
Cognito, Vault, CiS

CloudWatch, DataDog,
New Relic, Honeycomb

CloudWatch Logs, ELK,
Sumo Logic, Papertrail

RDS, ElastiCache, ec2-
snapper, Lambda

provider "aws" {

region = "us-east-1"

}

resource "aws instance" "example" {
ami = "ami-408c7128"
instance_type = "t2.micro”

¥

2. Write some code

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

terraform.Destroy(t, terraformOptions)
terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

3. Write automated tests

[] [] Q added env variable for alert to. X

& C' | D https://github.com/gruntwork-io/infrastructure-modules/pull/100/files

Changes from all commits ¥ Jump to..¥ +32 -20 EmEmE

13 MEEE sample-app-frontend/main.tf

%z @@ -20,12 +20,13 @@ data "template_file" "admin_service_container_definition" {

template = "${file("${path.module}/service.json")}"

vars {
23 - container_name =
2 - version =
- cpu =
- memory =
2 - vpc_name =

23 - postgres_endpoint =

C-m-b

"${var.
"${var.
"${var.
"${var.
"${var.

"${var.

service_name}"
version}"
cpu}”

memory}"
vpc_name}"

postgres_endpoint}"

Split

template = "${file("${path.module}/service.

vars {
container_name
version
cpu
memory
vpc_name
postgres_endpoint

kinesis_stream_arn

"${var.
"${var.
"${var.
"${var.
"${var.
"${var.

"${var.

Yevgeniy

o :
Review changes v

View [v
json")}"

service_name}"
version}"

cpu}"

memory}"

vpc_name}"
postgres_endpoint}"

kinesis_stream_arn}"

4. Do a code review

® © ® () Releases - gruntwork-iojmoc X

& - C @ GitHub, Inc. [US] | https://github.com, i C

D063
©-5dd9652

Dvos2
© beosfée

D v0.6.1
- ba83e71

Dv06.0
©-99ec6dc

v05.0
< dasecsd

Yevgeniy

Draft a new release

v0.6.3

(B brikis98 released this 15 days ago - 1 commit to master since this release

#13: Update module-server version. Add DescribeSubnets permission. Fix concurrency issues.

v0.6.2

[brikis98 released this 21 days ago - 5 commits to master since this release

#12: Clean up the tmp folder for boto3 before trying to extract into it again.

v0.6.1

(B brikis98 released this 24 days ago - 8 commits to master since this release

#11: Fix the Python script used by the asg-rolling-deploy module so it properly checks the tmp
folder to decide whether to extract the boto3 library.

v0.6.0

{8 brikis98 released this 25 days ago - 10 commits to master since this release

#10: The server-group module now assigns EBS permissions based on the ServerGroupName tag
instead of the Name tag, as the latter is too brittle. This change is backwards incompatible, so
we're bumping the patch version number, but unless you are doing something weird and
overriding ServerGroupName (very unlikely!), you shouldn't have to do anything to make this work
with your code.

v0.5.0

(B brikis98 released this on Aug 15 - 12 commits to master since this release

#9: The server-group_module now applies the tags you pass in via_custon tags to all resources

5. Release a new version of your code

from

ode
t

dc
ironmen

ione

t to env

6. Promote that vers
environmen

Key takeaway:

o
S
O
Y
)
)

Questions?
info@gruntwork.io

