
Lessons learned from writing

300,000 LINES OF
INFRASTRUCTURE CODE

It’s time for a confession:

DevOps is still in the stone ages

We are trying to build this…

Using this.

If you just read the headlines, it
all sounds so cutting edge…

Kubernetes, Docker, serverless, microservices,
infrastructure as code, distributed tracing, big
data systems, data warehouses, data lakes,
chaos engineering, zero-trust architecture,
streaming architecture, immutable
infrastructure, service discovery, service
meshes, NoSQL, NewSQL, ChatOps, HugOps,
NoOps, DevSecOpsLeanSREAgileWTFBBQ, …

But to me, it doesn’t feel cutting
edge. It feels more like…

#thisisdevops

#thisisdevops

#thisisdevops

#thisisdevops

Here’s something we don’t
admit often enough:

Building production-grade
infrastructure is hard.

And stressful.

And time consuming.

Some rough numbers:

Production-grade infrastructure

Project Examples Time estimate

Managed service ECS, ELB, RDS, ElastiCache 1 – 2 weeks

Distributed system (stateless) nginx, Node.js app, Rails app 2 – 4 weeks

Distributed system (stateful) Elasticsearch, Kafka, MongoDB 2 – 4 months

Entire cloud architecture Apps, DBs, CI/CD, monitoring, etc. 6 – 24 months

Fortunately, it’s getting a
little bit better

One trend I love: manage
(almost) everything as code

Manual provisioning à Infrastructure as code
Manual server config à Configuration management
Manual app config à Configuration files
Manual builds à Continuous integration
Manual deployment à Continuous delivery
Manual testing à Automated testing
Manual DBA work à Schema migrations
Manual specs à Automated specs (BDD)

The benefits of code:

1. Automation
2. Version control
3. Code review
4. Testing
5. Documentation
6. Reuse

At Gruntwork,
we’ve created a
reusable library of
infrastructure code

Primarily written in Terraform, Go,
Python, and Bash

Off-the-shelf, battle-tested solutions for AWS, Docker, VPCs, VPN,
MySQL, Postgres, Couchbase, ElasticSearch, Kafka, ZooKeeper,
Monitoring, Alerting, secrets management, CI, CD, DNS, …

3+ years of development.
300,000+ lines of code.

In this talk, I’ll share what we
learned along the way!

I’m
Yevgeniy
Brikman

ybrikman.com

Co-founder of
Gruntwork

gruntwork.io

Author

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

DevOps newbies are always
shocked by these numbers:

Production-grade infrastructure

Project Examples Time estimate

Managed service ECS, ELB, RDS, ElastiCache 1 – 2 weeks

Distributed system (stateless) nginx, Node.js app, Rails app 2 – 4 weeks

Distributed system (stateful) Elasticsearch, Kafka, MongoDB 2 – 4 months

Entire cloud architecture Apps, DBs, CI/CD, monitoring, etc. 6 – 24 months

How can it possibly take that
long??

Two main reasons:

Reason it takes so long #1:
Yak shaving

Yak shaving: a seemingly
endless series of small tasks
you have to do before you
can do what you actually
want.

Reason it takes so long #2:
It’s a long checklist!

Introducing:

The production-grade
infrastructure checklist

Task Description Example tools

Install Install the software binaries and all dependencies. Bash, Chef, Ansible,
Puppet

Configure
Configure the software at runtime: e.g., configure port
settings, file paths, users, leaders, followers, replication,
etc.

Bash, Chef, Ansible,
Puppet

Provision
Provision the infrastructure: e.g., EC2 Instances, load
balancers, network topology, security groups, IAM
permissions, etc.

Terraform,
CloudFormation

Deploy
Deploy the service on top of the infrastructure. Roll out
updates with no downtime: e.g., blue-green, rolling, canary
deployments.

Scripts, Orchestration
tools (ECS, K8S, Nomad)

Production-grade infrastructure checklist, part 1/4

Task Description Example tools

Security Encryption in transit (TLS) and on disk, authentication,
authorization, secrets management, server hardening.

ACM, EBS Volumes,
Cognito, Vault, CiS

Monitoring Availability metrics, business metrics, app metrics, server,
metrics, events, observability, tracing, alerting.

CloudWatch, DataDog,
New Relic, Honeycomb

Logs Rotate logs on disk. Aggregate log data to a central
location.

CloudWatch Logs, ELK,
Sumo Logic, Papertrail

Backup and
restore

Make backups of DBs, caches, and other data on a
scheduled basis. Replicate to separate region/account.

RDS, ElastiCache, ec2-
snapper, Lambda

Production-grade infrastructure checklist, part 2/4

Task Description Example tools

Networking VPCs, subnets, static and dynamic IPs, service discovery,
service mesh, firewalls, DNS, SSH access, VPN access.

EIPs, ENIs, VPCs,
NACLs, SGs, Route 53,
OpenVPN

High availability Withstand outages of individual processes, EC2 Instances,
services, Availability Zones, and regions.

Multi AZ, multi-region,
replication, ASGs, ELBs

Scalability Scale up and down in response to load. Scale horizontally
(more servers) and/or vertically (bigger servers).

ASGs, replication,
sharding, caching, divide
and conquer

Performance Optimize CPU, memory, disk, network, GPU and usage.
Query tuning. Benchmarking, load testing, profiling.

Dynatrace, valgrind,
VisualVM, ab, Jmeter

Production-grade infrastructure checklist, part 3/4

Task Description Example tools

Cost optimization Pick proper instance types, use spot and reserved
instances, use auto scaling, nuke unused resources

ASGs, spot instances,
reserved instances

Documentation Document your code, architecture, and practices. Create
playbooks to respond to incidents. READMEs, wikis, Slack

Tests Write automated tests for your infrastructure code. Run
tests after every commit and nightly. Terratest

Production-grade infrastructure checklist, part 4/4

Key takeaway: use a checklist to build
production-grade infrastructure.

Full checklist: gruntwork.io/devops-checklist/

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

What tools do you use to
implement that checklist?

We prefer tools that:

1. Define infrastructure as code
2. Are open source & popular
3. Support multiple providers
4. Support reuse & composition
5. Require no extra infrastructure
6. Support immutable infrastructure

Here’s the toolset we’ve found
most effective as of 2019:

Server Server Server Server Server

Networking, Load Balancers, Databases, Users, Permissions, etc

1. Deploy all the basic
infrastructure using Terraform

Server Server Server Server Server

Networking, Load Balancers, Databases, Users, Permissions, etc

VM VM VM VM VM

2. Configure the VMs using Packer

Server Server Server Server Server

Networking, Load Balancers, Databases, Users, Permissions, etc

VM VM VM VM VM

Docker
Cluster

3. Some of the VMs form a cluster
(e.g., ECS or Kubernetes cluster)

Server Server Server Server Server

Networking, Load Balancers, Databases, Users, Permissions, etc

VM VM VM VM VM

Docker
Cluster

Container Container

Container

Container

Container

Container

4. We use that Docker cluster to
run Docker containers

Server Server Server Server Server

Networking, Load Balancers, Databases, Users, Permissions, etc

VM VM VM VM VM

Docker
Cluster

Container Container

Container

Container

Container

Container

5. Under the hood: Bash, Go, and
Python hold everything together

Important note:

We find these tools useful…

But tools are not enough.
You must change behavior too.

Old way: make changes
directly and manually

New way: make changes
indirectly and automatically

Learning these takes time

More time than making a
change directly…

If you make changes manually,
the code will not reflect reality.

And the next person to try to
use it will get errors

So then they’ll fall back and
make manual changes

But making manual changes
does not scale

This does

Key takeaway: tools are not enough.
You also need to change behavior.

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

It’s tempting to define your entire
infrastructure in 1 file / folder…

dev
qa
test
stage
prod

Downsides: runs slower; harder to understand;
harder to review (plan output unreadable);
harder to test; harder to reuse code; need admin
permissions; team concurrency limited to 1…

dev
qa
test
stage
prod

Also, a mistake anywhere
could break everything!

dev
qa
test
stage
prod

Large modules considered
harmful.

dev
qa
test
stage
prod

What you really want is
isolation for each environment

dev stage prod

dev stage prod

vpc app vpc app vpc app

And for each “component”

Take your architecture…

And break it into small, reusable,
standalone, tested modules

module

module

module

module

module

module

module

module

module

module

module

module

module module

module

live
└ dev
└ stage
└ prod

Break architecture down by environment

live
└ dev

└ vpc
└ mysql
└ frontend

└ stage
└ vpc
└ mysql
└ frontend

└ prod
└ vpc
└ mysql
└ frontend

Break environments down by infrastructure type

live
└ dev

└ vpc
└ mysql
└ frontend

└ stage
└ vpc
└ mysql
└ frontend

└ prod
└ vpc
└ mysql
└ frontend

modules
└ vpc
└ mysql
└ microservice

Implement infrastructure in modules

gruntwork-io
└ asg
└ alb
└ ssh

live
└ dev

└ vpc
└ mysql
└ frontend

└ stage
└ vpc
└ mysql
└ frontend

└ prod
└ vpc
└ mysql
└ frontend

modules
└ vpc
└ mysql
└ microservice

Build complex modules from
simpler modules

Example: Vault Modules

terraform-aws-vault
└ modules
└ examples
└ test
└ README.md

Typical repo has three key folders:
/modules, /examples, /test

terraform-aws-vault
└ modules

└ install-vault
└ run-vault
└ vault-cluster
└ vault-elb
└ vault-security-group-rules

└ examples
└ test
└ README.md

/modules: implementation code, broken
down into standalone sub-modules

terraform-aws-vault
└ modules

└ install-vault
└ install-vault.sh

└ run-vault
└ vault-cluster
└ vault-security-group-rules
└ vault-elb

└ examples
└ test
└ README.md

install-xxx: sub-module to install the
software (e.g., in Packer or Docker)

terraform-aws-vault
└ modules

└ install-vault
└ run-vault

└ run-vault.sh
└ vault-cluster
└ vault-security-group-rules
└ vault-elb

└ examples
└ test
└ README.md
run-xxx: sub-module to launch the
software during boot (e.g., in User
Data)

terraform-aws-vault
└ modules

└ install-vault
└ run-vault
└ vault-cluster

└ main.tf
└ vault-security-group-rules
└ vault-elb

└ examples
└ test
└ README.md

xxx-cluster: sub-module to deploy
infrastructure (e.g., into an ASG)

terraform-aws-vault
└ modules

└ install-vault
└ run-vault
└ vault-cluster
└ vault-security-group-rules

└ main.tf
└ vault-elb

└ main.tf
└ examples
└ test
└ README.mdxxx-yyy: sub-modules with shareable

components (e.g., Security Group rules)

variable "cluster_name" {
description = "Name to use for the Vault cluster"

}

variable "vpc_id" {
description = "ID of the VPC to use"

}

variable "allowed_inbound_cidr_blocks" {
description = "IPs allowed to connect to Vault"
type = "list"

}Each sub-module exposes variables for
configuration and dependencies

Small, configurable sub-modules
make code reuse possible

As you can combine and compose
them any way you want!

terraform-aws-vault
└ modules
└ examples

└ vault-with-elb
└ vault-s3-backend
└ vault-ami

└ test
└ README.md

/examples: Runnable example code for
how to use the sub-modules

terraform-aws-vault
└ modules
└ examples

└ vault-with-elb
└ main.tf

└ vault-s3-backend
└ main.tf

└ vault-ami
└ test
└ README.md

Some examples are Terraform code

terraform-aws-vault
└ modules
└ examples

└ vault-with-elb
└ vault-s3-backend
└ vault-ami

└ vault.json
└ test
└ README.md

Some examples are Packer templates
or Dockerfiles

terraform-aws-vault
└ modules
└ examples
└ test

└ vault_with_elb_test.go
└ vault_s3_backend_test.go

└ README.md

/tests: Automated tests for the sub-
modules.

terraform-aws-vault
└ modules
└ examples

└ vault-with-elb
└ vault-s3-backend

└ test
└ vault_with_elb_test.go
└ vault_s3_backend_test.go

└ README.md

Typically, our tests deploy & validate
each example! More on this later.

Key takeaway: build infrastructure
from small, composable modules.

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

Infrastructure code rots very
quickly.

Infrastructure code rots very
quickly.

Infrastructure code without
automated tests is broken.

For general-purpose languages,
we can run unit tests on localhost

For infrastructure as code tools,
there is no “localhost” or “unit”

Therefore, the test strategy is:

1. Deploy real infrastructure
2. Validate it works
3. Undeploy the infrastructure

We write these integration tests in
Go using Terratest (open source!)

Terratest philosophy: how would
you test it manually?

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

Typical test structure

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

Specify where the code lives

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

Run terraform init and
terraform apply to deploy

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

Validate the infrastructure
works as expected

// Get IPs of servers
aws.GetPublicIpsOfEc2Instances(t, ids, region)

// Make HTTP requests in a retry loop
http.GetWithRetry(t, url, 200, expected, retries, sleep)

// Run command over SSH
ssh.CheckSshCommand(t, host, "vault operator init")

Terratest has many tools built-
in for validation

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

At the end of the test, run
terraform destroy to clean up

Note: tests create and destroy
lots of resources!

Pro tip #1: run tests in completely
separate “sandbox” accounts

Pro tip #2: clean up left-over
resources with cloud-nuke.

e2e
Tests

Test pyramid

Integration Tests

Unit Tests

As you go up the pyramid, tests get
more expensive, brittle, and slower

Cost,
brittleness,
run time

e2e
Tests

Integration Tests

Unit Tests

How the test pyramid works
with infrastructure code:

Individual
modules

Unit tests for infrastructure: test
individual sub-modules (keep ‘em small!)

e2e
Tests

Integration Tests

Unit Tests

Multiple
modules

Integration tests for infrastructure: test
multiple sub-modules together.

Individual
modules

e2e
Tests

Integration Tests

Unit Tests

Entire
stack

E2E tests for infrastructure code:
test entire environments (stage, prod).

Individual
modules

Multiple
modules

e2e
Tests

Integration Tests

Unit Tests

30 – 120+
minutes

5 – 60
minutes

Note the test times! This is another
reason to use small modules.

1 – 20
minutes

e2e
Tests

Integration Tests

Unit Tests

Key takeaway: infrastructure code
without automated tests is broken.

1. Checklist
2. Tools
3. Modules
4. Tests
5. Releases

Outline

Let’s put it all together:
checklist, tools, modules, tests

1. Go through the checklist

Task Description Example tools

Security Encryption in transit (TLS) and on disk, authentication,
authorization, secrets management, server hardening.

ACM, EBS Volumes,
Cognito, Vault, CiS

Monitoring Availability metrics, business metrics, app metrics, server,
metrics, events, observability, tracing, alerting.

CloudWatch, DataDog,
New Relic, Honeycomb

Logs Rotate logs on disk. Aggregate log data to a central
location.

CloudWatch Logs, ELK,
Sumo Logic, Papertrail

Backup and
restore

Make backups of DBs, caches, and other data on a
scheduled basis. Replicate to separate region/account.

RDS, ElastiCache, ec2-
snapper, Lambda

provider "aws" {
region = "us-east-1"

}

resource "aws_instance" "example" {
ami = "ami-408c7f28"
instance_type = "t2.micro"

}

2. Write some code

terraformOptions := &terraform.Options {
TerraformDir: "../examples/vault-with-elb",

}

defer terraform.Destroy(t, terraformOptions)

terraform.InitAndApply(t, terraformOptions)

validateServerIsWorking(t, terraformOptions)

3. Write automated tests

4. Do a code review

5. Release a new version of your code

qa

stage

prod

6. Promote that versioned code from
environment to environment

Key takeaway:

Before… …After

Questions?
info@gruntwork.io

