
Breaking through walls

How performance optimizations shatter security boundaries

Moritz Lipp

Mar 05, 2018—QCon London 2018

IAIK, Graz University of Technology

Whoami

• Moritz Lipp

• PhD student @ Graz University of Technology

• 7 @mlqxyz

• R mail@mlq.me

2 Moritz Lipp — IAIK, Graz University of Technology

https://twitter.com/mlqxyz
mailto:mail@mlq.me

Motivation

• Two major vulnerabilities in processors have been disclosed

• Affecting every CPU vendor and, thus, billions of devices

• Discovered in 2017 by 4 independent teams

• News coverage followed by a lot of panic

• What is this all about and what are the consequences?

3 Moritz Lipp — IAIK, Graz University of Technology

Performance optimizations

• Modern computers are amazingly fast

• Get faster and faster every year

• Smaller and smaller

• Include many clever optimizations to maximize performance

• What are the downsides?

4 Moritz Lipp — IAIK, Graz University of Technology

Side-channel attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

5 Moritz Lipp — IAIK, Graz University of Technology

Side-channel attacks

• Exploit unintentional information leakage by side-effects

• Power consumption

• Execution time

• CPU cache

• . . .

• Performance optimizations often induce side-channel

leakage

6 Moritz Lipp — IAIK, Graz University of Technology

Software-based side-channel attacks

• Do not require physical access

• Mounted solely by software

• native code

• within the browser

7 Moritz Lipp — IAIK, Graz University of Technology

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the instruction
set

• Vary in performance, size, costs, . . .

• Intel (Pentium, Sandy Bridge, Skylake, . . .)

• AMD (Athlon, Bobcat, Zen, . . .)

8 Moritz Lipp — IAIK, Graz University of Technology

Microarchitectural Side-channel attacks

• Side-channel attacks on the implementation of an ISA

• Expose internal state of the hardware

• depending on secret data

• to infer the secret data

9 Moritz Lipp — IAIK, Graz University of Technology

Caches and Cache Attacks

CPU Cache

printf("%d", i);

printf("%d", i);

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss

printf("%d", i);

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

printf("%d", i);

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

Respon
se

printf("%d", i);

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

DRAM access,
slow

10 Moritz Lipp — IAIK, Graz University of Technology

CPU Cache

printf("%d", i);
Cache

miss Reque
st

Respon
sei

printf("%d", i);

Cache
hit

No DRAM acces
s,

much faster

DRAM access,
slow

10 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

cac
hed

cached

VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

11 Moritz Lipp — IAIK, Graz University of Technology

Flush+Reload

Shared Memory

ATTACKER

Shared Memory

VICTIM

flush
access

access

fast if victim accessed data,
slow otherwise

11 Moritz Lipp — IAIK, Graz University of Technology

Memory Access Latency

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

12 Moritz Lipp — IAIK, Graz University of Technology

Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Break (K)ASLR

• Allow Rowhammer attack in software

• Build covert communication channels

13 Moritz Lipp — IAIK, Graz University of Technology

Cache Attack Demo

Operating Systems 101

Core of Meltdown and Spectre

• Kernel is isolated from user

space

• This isolation is a combination

of hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface called system calls

Userspace Kernelspace

Applications
Operating
System Memory

15 Moritz Lipp — IAIK, Graz University of Technology

Core of Meltdown and Spectre

• Breaks isolation between

applications and kernel

• User applications can access

kernel addresses

• Entire physical memory is

mapped in the kernel

16 Moritz Lipp — IAIK, Graz University of Technology

Out-of-order execution and

Meltdown

Wait for an hour

Wait for an hour

LATENCY

Parallelize
D

ep
en

de
nc

y

Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);

17 Moritz Lipp — IAIK, Graz University of Technology

Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);

Parallelize
D

ep
en

de
nc

y

17 Moritz Lipp — IAIK, Graz University of Technology

Out-of-order execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units

18 Moritz Lipp — IAIK, Graz University of Technology

Out-of-order execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible

19 Moritz Lipp — IAIK, Graz University of Technology

Reading memory

• If an application reads memory, . . .

• . . . permissions are checked

• . . . data is loaded

• If an application tries to read inaccessible memory, . . .

• . . . an error occurs

• . . . application is stopped

• But what does the CPU really do?

20 Moritz Lipp — IAIK, Graz University of Technology

Let’s try to read kernel memory

Building the Code

• Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner

21 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

22 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535

sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

23 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535

sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

23 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535

sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

23 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

24 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

24 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

24 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

24 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

24 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible

25 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible

25 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible

25 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible

25 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of

order?

• Problem: out-of-order instructions are not visible

25 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Adapted code

(volatile char) 0;

array[0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused-

value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

26 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Adapted code

(volatile char) 0;

array[0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused-

value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

26 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Adapted code

(volatile char) 0;

array[0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused-

value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

26 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Traces in the Cache

27 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

28 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

28 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

28 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

28 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

29 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

29 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

29 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Maybe there is no permission check in transient instructions...

• ...or it is only done when commiting them

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

29 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

30 Moritz Lipp — IAIK, Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

30 Moritz Lipp — IAIK, Graz University of Technology

Building Meltdown

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel

address space

31 Moritz Lipp — IAIK, Graz University of Technology

Building Meltdown

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel

address space

31 Moritz Lipp — IAIK, Graz University of Technology

Building Meltdown

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel

address space

31 Moritz Lipp — IAIK, Graz University of Technology

Building Meltdown

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel

address space

31 Moritz Lipp — IAIK, Graz University of Technology

Spying on passwords

Dumping memory

Can we fix that?

Take the kernel addresses...

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel addresses...

34 Moritz Lipp — IAIK, Graz University of Technology

Take the kernel addresses...

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel addresses...

34 Moritz Lipp — IAIK, Graz University of Technology

...and remove them

• ...and remove them if not needed?

• User accessible check in hardware is not

reliable

35 Moritz Lipp — IAIK, Graz University of Technology

...and remove them

• ...and remove them if not needed?

• User accessible check in hardware is not

reliable

35 Moritz Lipp — IAIK, Graz University of Technology

Idea

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

36 Moritz Lipp — IAIK, Graz University of Technology

Idea

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

36 Moritz Lipp — IAIK, Graz University of Technology

Idea

• Let’s just unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

36 Moritz Lipp — IAIK, Graz University of Technology

Userspace Kernelspace

Applications
Operating
System Memory

Userspace Kernelspace

Applications
Operating
System Memory

Userspace Kernelspace

Applications

Kernel View User View

context switch

Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch

37 Moritz Lipp — IAIK, Graz University of Technology

Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch

37 Moritz Lipp — IAIK, Graz University of Technology

Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch

37 Moritz Lipp — IAIK, Graz University of Technology

Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch

37 Moritz Lipp — IAIK, Graz University of Technology

Kernel Address Space Isolation

• We published KAISER in July 2017

• Intel and others improved and merged it into Linux as KPTI

(Kernel Page Table Isolation)

• Microsoft implemented similar concept in Windows 10

• Apple implemented it in macOS 10.13.2 and called it “Double

Map”

• All share the same idea: switching address spaces on context

switch

37 Moritz Lipp — IAIK, Graz University of Technology

Performance

• Depends on how often you need to switch between kernel and user

space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

38 Moritz Lipp — IAIK, Graz University of Technology

Performance

• Depends on how often you need to switch between kernel and user

space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

38 Moritz Lipp — IAIK, Graz University of Technology

Performance

• Depends on how often you need to switch between kernel and user

space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

38 Moritz Lipp — IAIK, Graz University of Technology

Performance

• Depends on how often you need to switch between kernel and user

space

• Can be slow, 40% or more on old hardware

• But modern CPUs have additional features

• ⇒ Performance overhead on average below 2%

38 Moritz Lipp — IAIK, Graz University of Technology

Speculative Execution and Spectre

Procsciutto

Funghi

Diavolo

Diavolo

Diavolo

Diavolo

»A table for 6 please«

Speculative Cooking

»A table for 6 please«

Speculative Execution

• CPU tries to predict the future (branch predictor), . . .

• . . . based on events learned in the past

• Speculative execution of instructions

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

• Measurable side-effects?

39 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Execute

index = 0;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 1;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 2;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 3;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Execute

index = 4;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Execute

index = 5;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Speculate

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 1: Bounds-check bypass)

Execute

index = 6;

if (index < 4)

char* data = "textKEY";

LUT[data[index] * 4096] 0

th
en

else

Prediction

40 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

Execute

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

Speculate

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = bird;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

Speculate

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

Execute

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

fly()

swim
()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre (Variant 2: Branch target injection)

a->move()

Animal* a = fish;

LUT[data[index] * 4096] 0

fly(
)

Prediction

swim()
swim

()

41 Moritz Lipp — IAIK, Graz University of Technology

Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions

42 Moritz Lipp — IAIK, Graz University of Technology

Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions

42 Moritz Lipp — IAIK, Graz University of Technology

Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions

42 Moritz Lipp — IAIK, Graz University of Technology

Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions

42 Moritz Lipp — IAIK, Graz University of Technology

Spectre

• We can influence the CPU to mispredict the future

• CPU speculatively executes code that should never be executed

• Read own memory (e.g., sandbox escape)

• “Convince” other programs to reveal their secrets

• Again, a cache attack (Flush+Reload) is used to read the secret

• Much harder to fix, KAISER does not help

• Ongoing effort to patch via microcode update and compiler

extensions

42 Moritz Lipp — IAIK, Graz University of Technology

Can we fix that?

Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

43 Moritz Lipp — IAIK, Graz University of Technology

Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

43 Moritz Lipp — IAIK, Graz University of Technology

Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

43 Moritz Lipp — IAIK, Graz University of Technology

Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

43 Moritz Lipp — IAIK, Graz University of Technology

Spectre Mitigations

• Trivial approach: disable speculative execution

• No wrong speculation if there is no speculation

• Problem: Massive performance hit!

• Also: How to disable it?

• Speculative execution is deeply integrated into CPU

43 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Workaround: insert instructions stopping

speculation

→ insert after every bounds check

• x86: LFENCE, ARM: CSDB

• Available on all Intel CPUs, retrofitted to existing

ARMv7 and ARMv8

44 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer:

builtin load no speculate

45 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer:

builtin load no speculate

45 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer:

builtin load no speculate

45 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier requires compiler supported

• Already implemented in GCC, LLVM, and MSVC

• Can be automated (MSVC) → not really reliable

• Explicit use by programmer:

builtin load no speculate

45 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

46 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

46 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier works if affected code

constructs are known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers

47 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier works if affected code

constructs are known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers

47 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier works if affected code

constructs are known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers

47 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 1 Mitigations

• Speculation barrier works if affected code

constructs are known

• Programmer has to fully understand vulnerability

• Automatic detection is not reliable

• Non-negligible performance overhead of barriers

47 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Microcode/MSRs)

Intel released microcode updates

• Indirect Branch Restricted Speculation (IBRS):

• Do not speculate based on anything before entering IBRS mode

→ lesser privileged code cannot influence predictions

• Indirect Branch Predictor Barrier (IBPB):

• Flush branch-target buffer

• Single Thread Indirect Branch Predictors (STIBP):

• Isolates branch prediction state between two hyperthreads

48 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function

→ performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction

→ microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

Retpoline (compiler extension)

push <call_target>

call 1f

2: ; speculation will continue here

lfence ; speculation barrier

jmp 2b ; endless loop

1:

lea 8(%rsp), %rsp ; restore stack pointer

ret ; the actual call to <call_target>

→ always predict to enter an endless loop

• instead of the correct (or wrong) target function → performance?

• On Broadwell or newer:

• ret may fall-back to the BTB for prediction → microcode patches to prevent that

49 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

50 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

50 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

50 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

50 Moritz Lipp — IAIK, Graz University of Technology

Spectre Variant 2 Mitigations (Software)

• ARM provides hardened Linux kernel

• Clears branch-predictor state on context switch

• Either via instruction (BPIALL)...

• ...or workaround (disable/enable MMU)

• Non-negligible performance overhead (≈ 200-300 ns)

50 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What does not work

• Prevent access to high-resolution timer

→ Own timer using timing thread

• Flush instruction only privileged

→ Cache eviction through memory accesses

• Just move secrets into secure world

→ Spectre works on secure enclaves

51 Moritz Lipp — IAIK, Graz University of Technology

What to do now?

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

Learn from it

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat

model”

→ for years we solely optimized for performance

52 Moritz Lipp — IAIK, Graz University of Technology

When you read the manuals...

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

53 Moritz Lipp — IAIK, Graz University of Technology

When you read the manuals...

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

53 Moritz Lipp — IAIK, Graz University of Technology

When you read the manuals...

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

53 Moritz Lipp — IAIK, Graz University of Technology

A unique chance

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction industry)

• find good trade-offs between security and performance

54 Moritz Lipp — IAIK, Graz University of Technology

Conclusion

Conclusion

• Underestimated microarchitectural attacks for a long time

• Meltdown and Spectre exploit performance optimizations

• Allow to leak arbitrary memory

• Countermeasures come with a performance impact

• Find trade-offs between security and performance

55 Moritz Lipp — IAIK, Graz University of Technology

Breaking through walls

How performance optimizations shatter security boundaries

Moritz Lipp

Mar 05, 2018—QCon London 2018

IAIK, Graz University of Technology

	Caches and Cache Attacks
	Operating Systems 101
	Out-of-order execution and Meltdown
	Speculative Execution and Spectre
	What to do now?
	Conclusion

