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Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not a  
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, timing, and pricing of any 
features or functionality described for Oracle’s products may change and remains at the 
sole discretion of Oracle Corporation.
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Views of Computation
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deterministic 
sequential

nondeterministic  
interactive/concurrent
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Pure Functional Programming
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deterministic 
sequential

⟦f x⟧  ≅ function application
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Linear Types: nondeterminism as a function of unknown values
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Linear Types: nondeterminism as a function of unknown values
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getLine  ::  World -> ( World, String) 
putStrLn ::  World -> String ->  World

main ::  World ->  World 
main w  = let rec  
            (w, str)  = getLine  w 
                   w  = putStrLn w  str 
          in w
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Linear Types: nondeterminism as a function of unknown values
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getLine  ::  World -> ( World, String) 
putStrLn ::  World -> String ->  World

main ::  World ->  World 
main w0 = let 
            (w1, str) = getLine w0 
                   w2 = putStrLn w1 str 
          in w2
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Linear Types: nondeterminism as a function of unknown values
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getLine  ::  World -> ( World, String) 
putStrLn ::  World -> String ->  World

main ::  World ->  World 
main w0 = let 
            (w1, str1) = getLine w0 
            (_,  str2) = getLine w0 
                   w2  = putStrLn w1 str1 
          in w2
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Linear Types: nondeterminism as a function of unknown values
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getLine  :: ¡World -> (¡World, String) 
putStrLn :: ¡World -> String -> ¡World

main :: ¡World -> ¡World 
main w0 = let 
            (w1, str1) = getLine w0 
            (_,  str2) = getLine w0 
                   w2  = putStrLn w1 str1 
          in w2

w0 of type ¡World 
has been consumed
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Linear Types: nondeterminism as a function of unknown values
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getLine  :: ¡World -> (¡World, String) 
putStrLn :: ¡World -> String -> ¡World

main :: ¡World -> ¡World 
main w  = let rec  
            (w, str)  = getLine  w 
                   w  = putStrLn w  str 
          in w
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IO Type: Move nondeterminism outside the program
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IO Type: Move nondeterminism outside the program
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getLine  :: IO String 
putStrLn :: String -> IO () 
main     :: IO ()

main = do 
    z <- getLine 
    putStrLn z
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IO Type: Move nondeterminism outside the program
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main = do 
    z <- getLine 
    putStrLn z

main = bindIO getLine (\z -> putStrLn z)

getLine  :: IO String 
putStrLn :: String -> IO () 
main     :: IO ()
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IO Type: Move nondeterminism outside the program
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main = do 
    z <- getLine 
    putStrLn z

getLine  :: IO String 
putStrLn :: String -> IO () 
main     :: IO ()

returnIO :: IO a -> IO a 
bindIO   :: IO a -> (a -> IO b) -> IO b

main = bindIO getLine (\z -> putStrLn z)
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Classical Imperative Programming
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⟦p(x)⟧  = predicate transformer

nondeterministic  
concurrent/interactive
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import static java.io.Console.*;

var str = readLine(); 
printf(str);
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class CompletableFuture<A> { 
// completedFuture :: A -> CompletableFuture A 
  static <A> CompletableFuture<A> completedFuture(A value); 

// thenCompose :: CompletableFuture A -> (A -> CompletableFuture B) -> CompletableFuture B 
         <B> CompletableFuture<B> thenCompose(Function<A, CompletableFuture<B>> f); 
}

package java.util.concurrent;

returnIO :: IO a -> IO a 
bindIO   :: IO a -> (a -> IO b) -> IO b

Recall:
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var str = readLine(); 

printf(str);
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class CompletableFuture<A> { 

  static <A> CompletableFuture<A> completedFuture(A value); 

  <B> CompletableFuture<B> thenCompose(Function<A, CompletableFuture<B>> f); 

}



double calcImportantFinance(double x) { 
    try { 
        double result; 
        result = compute("USD->euro", x); 
        result = compute("subtractTax", result * 1.3); 
        result = compute("addInterest", result); 
        return result; 
    } catch(Exception ex) { 
        log(ex); 
        throw ex; 
    } 
} 

double compute(String op, double x); 



CompletableFuture<Double> calcImportantFinance (double x) { 
    return  
      compute("USD->euro", 100.0) 
      .thenCompose(result -> compute("subtractTax", result * 1.3)) 
      .thenCompose(result -> compute("addInterest", result)) 
      .handle((result, ex) -> { 
          if (ex != null) { 
             log(ex); 
             throw new RuntimeException(ex); 
          } else 
             return result; 
       }); 
}



Reactive Programming: Lessons Learned 

Tomasz Nurkiewicz 



double result; 
result = compute("USD->euro", 100.0); 
if (result > 1000) 
    result = compute("subtractTax", result * 1.3); 
while (!sufficient(result)) 
    result = compute("addInterest", result); 
return result;

1. Lost Control Flow



CompletableFuture<Double> calcImportantFinance (double x) { 
    return  
      compute("USD->euro", 100.0) 
      .thenCompose(result -> compute("subtractTax", result * 1.3)) 
      .thenCompose(result -> compute("addInterest", result)) 
      .handle((result, ex) -> { 
          if (ex != null) { 
             log(ex); 
             throw new RuntimeException(ex); 
          } else 
             return result; 
       }); 
}

2. Lost Context



CompletableFuture<Double> calcImportantFinance (double x) { 
    return  
      compute("USD->euro", 100.0) 
      .thenCompose(result -> compute("subtractTax", result * 1.3)) 
      .thenCompose(result -> compute("addInterest", result)) 
      .handle((result, ex) -> { 
          if (ex != null) { 
             log(ex); 
             throw new RuntimeException(ex); 
          } else 
             return result; 
       }); 
}

3. Viral



async Task<double> CalcImportantFinance()  
{ 
    try  
    { 
        double result; 
        result = await compute("USD->euro", x); 
        result = await compute("subtractTax", result * 1.3); 
        result = await compute("addInterest", result); 
        return result; 
    } 
    catch (Exception ex)  
    { 
        log(ex); 
        throw ex; 
    } 
}

Async/Await
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var str = readLine(); 

printf(str);

Why give up a good (core!) abstraction  
just because of an inadequate implementation?
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thread/process =

yield control and resume
+

execution scheduling
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thread/process =

continuation
+

scheduler
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Continuations

package java.lang; 

public class Continuation implements Runnable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

protected static Continuation currentContinuation(ContinuationScope scope); 
}
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package java.lang; 

public class Continuation implements Runnable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

protected static Continuation currentContinuation(ContinuationScope scope); 
}

One-Shot Multi-Prompt Delimited Continuations
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Continuation cont = new Continuation(SCOPE, () -> { 
   while (true) { 
      // maybe in some deep method: 
      System.out.println("before"); 
      Continuation.yield(SCOPE); 
      System.out.println("after"); 
   } 
}); 

while (!cont.isDone()) { 
   cont.run(); 
}
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package java.lang; 

public class Continuation implements Runnable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

protected static Continuation currentContinuation(ContinuationScope scope); 

public PreemptStatus tryPreempt(Thread thread); 
} 
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package java.lang; 

public class Continuation implements Runnable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

protected static Continuation currentContinuation(ContinuationScope scope); 

public PreemptStatus tryPreempt(Thread thread); 

public StackWalker stackWalker(); 
public StackTraceElement[] getStackTrace(); 

}
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package java.lang; 

public class Continuation implements Runnable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

}

One-Shot Multi-Prompt Delimited Continuations
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package java.lang; 

public class Continuation implements Runnable, Cloneable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

public Continuation clone(); 
}

Reentrant Multi-Prompt Delimited Continuations



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  �37

class MultiShotContinuation { 
    private Continuation cont; 

    public MultiShotContinuation(ContinuationScope scope, Runnable task) { 
        this.cont = new Continuation(scope, task); 
    } 

    public MultiShotContinuation run() { 
        var copy = cont.clone(); 
        copy.run(); 
        return copy; 
    } 
}

Reentrant Multi-Prompt Delimited Continuations
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package java.lang; 

public class Continuation implements Runnable, Cloneable, Serializable { 
public Continuation(ContinuationScope scope, Runnable body); 

public final void run(); 
public boolean isDone(); 
public static void yield(ContinuationScope scope); 

public Continuation clone(); 
}

Reentrant Multi-Prompt Serializable Delimited Continuations
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fiber  = continuation + scheduler
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Why?
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App

Connections

simple  

less scalable

App

Connections scalable, 
complex,  
non-interoperable, 
hard to debug/profile

OR

SYNC

Java BlueASYNC
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Why?
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App

Connections



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  

Codes Like Sync, Works Like Async

Why?
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App

Connections
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Codes Like Sync, Works Like Async

Why?
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App

Connections

Concurrency Made Simple
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IO, java.util.concurrent 

   — now fiber-blocking
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package java.util.concurrent.locks; 
public class LockSupport { 

    

}

public static void unpark(Object strand) { 

   if (strand instanceof Fiber) { 

       var f = ((Fiber<?>)strand); 

       f.scheduler.submit(f.continuation); 

   } else if (strand instanceof Thread) { 

       Unsafe.unpark(thread) 

   } else  

       throw new IllegalArgumentException(); 

}

public static void park(...) { 

   var strand = Strands.currentStrand(); 

   if (strand instanceof Fiber) 

       Continuation.yield(FIBER_SCOPE); 

   else 

       Unsafe.park(false, 0L); 

} 
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Async/Await
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class Async<T> extends CompletableFuture<T> { 

  public static <T> T await(Async<T> async) throws InterruptedException, ExecutionException { 

    return async.get(); 

  } 

}
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200-300B metadata 
Pay-as-you-go stack

>2KB metadata 
1MB stack
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1-10µs ???ns
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“Rethink threads”
–The Java Architects
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Structured Concurrency

• Timeouts and cancellation for humans 

• Notes on structured concurrency, or: Go statement considered harmful

Martin Sústrik (libdill, C)
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• Structured Concurrency 

• Update on Structured Concurrency

Nathaniel J. Smith  (Trio, Python)
© Martin Sústrik

https://vorpus.org/blog/timeouts-and-cancellation-for-humans/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
http://250bpm.com/blog:71
http://250bpm.com/blog:137
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• Cannot exit scope until all fibers scheduled in the scope have terminated 

• Fiber scopes can be nested 

• A FiberScope has a termination queue that collect the results of scope’s fibers 

• Canceling a fiber of a cancellable scope will cancel all fibers that it has scheduled 
in the scope. With nesting, a tree of fibers may be cancelled. 

• Cancelling a fiber parked in a blocking I/O operation will cause it to unpark and 
check for cancellation

�50

Structured Concurrency
try (var scope = FiberScope.cancellable()) { 
    Fiber<?> fiber = scope.schedule(task); 
}
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Structured Concurrency
Return the result of the first task that completes, cancelling and waiting for 
any outstanding fibers to terminate before returning.

�51

<V> V anyOf(Callable<? extends V>[] tasks) throws Throwable { 
    try (var scope = FiberScope.cancellable()) { 
        var queue = new FiberScope.TerminationQueue<V>(); 
        Arrays.stream(tasks).forEach(task -> scope.schedule(task, queue)); 

        try { 
            return queue.take().join(); 
        } catch (CompletionException e) { 
            throw e.getCause(); 
        } finally { 
            scope.fibers().forEach(Fiber::cancel); // cancel remaining fibers 
        } 
    } 
}
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Structured Concurrency
Same, with a deadline. If the deadline expires then all fibers scheduled in 
the scope are cancelled.
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<V> V anyOf(Callable<? extends V>[] tasks, Instant deadline) throws Throwable { 
    try (var scope = FiberScope.withDeadline(deadline)) { 
        var queue = new FiberScope.TerminationQueue<V>(); 
        Arrays.stream(tasks).forEach(task -> scope.schedule(task, queue)); 

        try { 
            return queue.take().join(); 
        } catch (CompletionException e) { 
            throw e.getCause(); 
        } finally { 
            scope.fibers().forEach(Fiber::cancel); // cancel remaining fibers 
        } 
    } 
}
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class Generator<T> implements Iterable<T> { 
    private static final ContinuationScope GENERATOR = new ContinuationScope(); 
    private static class GenContinuation<T> extends Continuation { 
        public GenContinuation() { super(GENERATOR); } 
        private T value; 
    } 
     
    public static void yield(T value) {  
        ((GenContinuation)currentContinuation(GENERATOR)).val = value;  
        Continuation.yield(GENERATOR);  
    } 

    private final GenContinuation<T> cont; 
    public Generator(Runnable body) { cont = new GenContinuation<T>(body); } 

    public Iterator<T> iterator() { 
        return new Iterator<T>() { 
            public T next()          { cont.run(); return cont.val; } 
            public boolean hasNext() { return !cont.isDone(); } 
        } 
    } 
}
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var fibonacci = new Generator<Integer>(() -> { 
    Generator.yield(0); 
    int a = 0; 
    int b = 1; 
    while(true) { 
        Generator.yield(b); 
        var sum = a + b; 
        a = b; 
        b = sum; 
    } 
}); 

for (var num : fibonacci) { 
    System.out.println(num); 
    if (num > 10_000) break; 
}
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var greetedPrimes = new Generator<String>(() -> { 
    for (int n = 0; ; n++) 
        if (isPrime(n)) { 
            var greeting =  Console.readLine(); 
            Generator.yield(greeting + ": " + n); 
        } 
}); 

Fiber.schedule(()-> { 
    for (var x : greetedPrimes) 
        System.out.println(x); 
}
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https:// 
wiki.openjdk.java.net
/display/loom/ 
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