
Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Why Java Is Getting
Continuations

Ron Pressler, Oracle
March 5, 2019

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a  
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, timing, and pricing of any
features or functionality described for Oracle’s products may change and remains at the
sole discretion of Oracle Corporation.

�2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Views of Computation

�3

deterministic 
sequential

nondeterministic  
interactive/concurrent

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Pure Functional Programming

�4

deterministic 
sequential

⟦f x⟧ ≅ function application

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �5

B

A

C D

A, X1

E F

Linear Types: nondeterminism as a function of unknown values

A, Y1

B, X2 B, Y2

C, X3 D, Y3

E, X4 F, X4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Linear Types: nondeterminism as a function of unknown values

�6

getLine :: World -> (World, String)
putStrLn :: World -> String -> World

main :: World -> World
main w = let rec
 (w, str) = getLine w
 w = putStrLn w str
 in w

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Linear Types: nondeterminism as a function of unknown values

�7

getLine :: World -> (World, String)
putStrLn :: World -> String -> World

main :: World -> World
main w0 = let
 (w1, str) = getLine w0
 w2 = putStrLn w1 str
 in w2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Linear Types: nondeterminism as a function of unknown values

�8

getLine :: World -> (World, String)
putStrLn :: World -> String -> World

main :: World -> World
main w0 = let
 (w1, str1) = getLine w0
 (_, str2) = getLine w0
 w2 = putStrLn w1 str1
 in w2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Linear Types: nondeterminism as a function of unknown values

�9

getLine :: ¡World -> (¡World, String)
putStrLn :: ¡World -> String -> ¡World

main :: ¡World -> ¡World
main w0 = let
 (w1, str1) = getLine w0
 (_, str2) = getLine w0
 w2 = putStrLn w1 str1
 in w2

w0 of type ¡World
has been consumed

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Linear Types: nondeterminism as a function of unknown values

�10

getLine :: ¡World -> (¡World, String)
putStrLn :: ¡World -> String -> ¡World

main :: ¡World -> ¡World
main w = let rec
 (w, str) = getLine w
 w = putStrLn w str
 in w

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �11

IO Type: Move nondeterminism outside the program

A

B

C

E

D

F

B

A

C D

E F

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

IO Type: Move nondeterminism outside the program

�12

getLine :: IO String
putStrLn :: String -> IO ()
main :: IO ()

main = do
 z <- getLine
 putStrLn z

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

IO Type: Move nondeterminism outside the program

�13

main = do
 z <- getLine
 putStrLn z

main = bindIO getLine (\z -> putStrLn z)

getLine :: IO String
putStrLn :: String -> IO ()
main :: IO ()

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

IO Type: Move nondeterminism outside the program

�14

main = do
 z <- getLine
 putStrLn z

getLine :: IO String
putStrLn :: String -> IO ()
main :: IO ()

returnIO :: IO a -> IO a
bindIO :: IO a -> (a -> IO b) -> IO b

main = bindIO getLine (\z -> putStrLn z)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Classical Imperative Programming

�15

⟦p(x)⟧ = predicate transformer

nondeterministic  
concurrent/interactive

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �16

import static java.io.Console.*;

var str = readLine();
printf(str);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �17

class CompletableFuture<A> {
// completedFuture :: A -> CompletableFuture A
 static <A> CompletableFuture<A> completedFuture(A value);

// thenCompose :: CompletableFuture A -> (A -> CompletableFuture B) -> CompletableFuture B
 CompletableFuture thenCompose(Function<A, CompletableFuture> f);
}

package java.util.concurrent;

returnIO :: IO a -> IO a
bindIO :: IO a -> (a -> IO b) -> IO b

Recall:

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �18

var str = readLine();

printf(str);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �19

class CompletableFuture<A> {

 static <A> CompletableFuture<A> completedFuture(A value);

 CompletableFuture thenCompose(Function<A, CompletableFuture> f);

}

double calcImportantFinance(double x) {
 try {
 double result;
 result = compute("USD->euro", x);
 result = compute("subtractTax", result * 1.3);
 result = compute("addInterest", result);
 return result;
 } catch(Exception ex) {
 log(ex);
 throw ex;
 }
}

double compute(String op, double x);

CompletableFuture<Double> calcImportantFinance (double x) {
 return
 compute("USD->euro", 100.0)
 .thenCompose(result -> compute("subtractTax", result * 1.3))
 .thenCompose(result -> compute("addInterest", result))
 .handle((result, ex) -> {
 if (ex != null) {
 log(ex);
 throw new RuntimeException(ex);
 } else
 return result;
 });
}

Reactive Programming: Lessons Learned

Tomasz Nurkiewicz

double result;
result = compute("USD->euro", 100.0);
if (result > 1000)
 result = compute("subtractTax", result * 1.3);
while (!sufficient(result))
 result = compute("addInterest", result);
return result;

1. Lost Control Flow

CompletableFuture<Double> calcImportantFinance (double x) {
 return
 compute("USD->euro", 100.0)
 .thenCompose(result -> compute("subtractTax", result * 1.3))
 .thenCompose(result -> compute("addInterest", result))
 .handle((result, ex) -> {
 if (ex != null) {
 log(ex);
 throw new RuntimeException(ex);
 } else
 return result;
 });
}

2. Lost Context

CompletableFuture<Double> calcImportantFinance (double x) {
 return
 compute("USD->euro", 100.0)
 .thenCompose(result -> compute("subtractTax", result * 1.3))
 .thenCompose(result -> compute("addInterest", result))
 .handle((result, ex) -> {
 if (ex != null) {
 log(ex);
 throw new RuntimeException(ex);
 } else
 return result;
 });
}

3. Viral

async Task<double> CalcImportantFinance()
{
 try
 {
 double result;
 result = await compute("USD->euro", x);
 result = await compute("subtractTax", result * 1.3);
 result = await compute("addInterest", result);
 return result;
 }
 catch (Exception ex)
 {
 log(ex);
 throw ex;
 }
}

Async/Await

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �27

var str = readLine();

printf(str);

Why give up a good (core!) abstraction  
just because of an inadequate implementation?

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �28

thread/process =

yield control and resume
+

execution scheduling

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �29

thread/process =

continuation
+

scheduler

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �30

Continuations

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

protected static Continuation currentContinuation(ContinuationScope scope);
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �31

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

protected static Continuation currentContinuation(ContinuationScope scope);
}

One-Shot Multi-Prompt Delimited Continuations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �32

Continuation cont = new Continuation(SCOPE, () -> {
 while (true) {
 // maybe in some deep method:
 System.out.println("before");
 Continuation.yield(SCOPE);
 System.out.println("after");
 }
});

while (!cont.isDone()) {
 cont.run();
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �33

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

protected static Continuation currentContinuation(ContinuationScope scope);

public PreemptStatus tryPreempt(Thread thread);
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �34

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

protected static Continuation currentContinuation(ContinuationScope scope);

public PreemptStatus tryPreempt(Thread thread);

public StackWalker stackWalker();
public StackTraceElement[] getStackTrace();

}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �35

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

}

One-Shot Multi-Prompt Delimited Continuations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �36

package java.lang;

public class Continuation implements Runnable, Cloneable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

public Continuation clone();
}

Reentrant Multi-Prompt Delimited Continuations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �37

class MultiShotContinuation {
 private Continuation cont;

 public MultiShotContinuation(ContinuationScope scope, Runnable task) {
 this.cont = new Continuation(scope, task);
 }

 public MultiShotContinuation run() {
 var copy = cont.clone();
 copy.run();
 return copy;
 }
}

Reentrant Multi-Prompt Delimited Continuations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �38

package java.lang;

public class Continuation implements Runnable, Cloneable, Serializable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public boolean isDone();
public static void yield(ContinuationScope scope);

public Continuation clone();
}

Reentrant Multi-Prompt Serializable Delimited Continuations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �39

fiber = continuation + scheduler

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Why?

�40

App

Connections

simple

less scalable

App

Connections scalable,
complex,
non-interoperable,
hard to debug/profile

OR

SYNC

Java BlueASYNC

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Why?

�41

App

Connections

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Codes Like Sync, Works Like Async

Why?

�42

App

Connections

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Codes Like Sync, Works Like Async

Why?

�43

App

Connections

Concurrency Made Simple

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �44

IO, java.util.concurrent

 — now fiber-blocking

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �45

package java.util.concurrent.locks;
public class LockSupport {

}

public static void unpark(Object strand) {

 if (strand instanceof Fiber) {

 var f = ((Fiber<?>)strand);

 f.scheduler.submit(f.continuation);

 } else if (strand instanceof Thread) {

 Unsafe.unpark(thread)

 } else

 throw new IllegalArgumentException();

}

public static void park(...) {

 var strand = Strands.currentStrand();

 if (strand instanceof Fiber)

 Continuation.yield(FIBER_SCOPE);

 else

 Unsafe.park(false, 0L);

}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Async/Await

�46

class Async<T> extends CompletableFuture<T> {

 public static <T> T await(Async<T> async) throws InterruptedException, ExecutionException {

 return async.get();

 }

}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

200-300B metadata
Pay-as-you-go stack

>2KB metadata
1MB stack

�47

1-10µs ???ns

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

“Rethink threads”
–The Java Architects

�48

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Structured Concurrency

• Timeouts and cancellation for humans

• Notes on structured concurrency, or: Go statement considered harmful

Martin Sústrik (libdill, C)

�49

• Structured Concurrency

• Update on Structured Concurrency

Nathaniel J. Smith (Trio, Python)
© Martin Sústrik

https://vorpus.org/blog/timeouts-and-cancellation-for-humans/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
http://250bpm.com/blog:71
http://250bpm.com/blog:137

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

• Cannot exit scope until all fibers scheduled in the scope have terminated

• Fiber scopes can be nested

• A FiberScope has a termination queue that collect the results of scope’s fibers

• Canceling a fiber of a cancellable scope will cancel all fibers that it has scheduled
in the scope. With nesting, a tree of fibers may be cancelled.

• Cancelling a fiber parked in a blocking I/O operation will cause it to unpark and
check for cancellation

�50

Structured Concurrency
try (var scope = FiberScope.cancellable()) {
 Fiber<?> fiber = scope.schedule(task);
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Structured Concurrency
Return the result of the first task that completes, cancelling and waiting for
any outstanding fibers to terminate before returning.

�51

<V> V anyOf(Callable<? extends V>[] tasks) throws Throwable {
 try (var scope = FiberScope.cancellable()) {
 var queue = new FiberScope.TerminationQueue<V>();
 Arrays.stream(tasks).forEach(task -> scope.schedule(task, queue));

 try {
 return queue.take().join();
 } catch (CompletionException e) {
 throw e.getCause();
 } finally {
 scope.fibers().forEach(Fiber::cancel); // cancel remaining fibers
 }
 }
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Structured Concurrency
Same, with a deadline. If the deadline expires then all fibers scheduled in
the scope are cancelled.

�52

<V> V anyOf(Callable<? extends V>[] tasks, Instant deadline) throws Throwable {
 try (var scope = FiberScope.withDeadline(deadline)) {
 var queue = new FiberScope.TerminationQueue<V>();
 Arrays.stream(tasks).forEach(task -> scope.schedule(task, queue));

 try {
 return queue.take().join();
 } catch (CompletionException e) {
 throw e.getCause();
 } finally {
 scope.fibers().forEach(Fiber::cancel); // cancel remaining fibers
 }
 }
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �53

class Generator<T> implements Iterable<T> {
 private static final ContinuationScope GENERATOR = new ContinuationScope();
 private static class GenContinuation<T> extends Continuation {
 public GenContinuation() { super(GENERATOR); }
 private T value;
 }

 public static void yield(T value) {
 ((GenContinuation)currentContinuation(GENERATOR)).val = value;
 Continuation.yield(GENERATOR);
 }

 private final GenContinuation<T> cont;
 public Generator(Runnable body) { cont = new GenContinuation<T>(body); }

 public Iterator<T> iterator() {
 return new Iterator<T>() {
 public T next() { cont.run(); return cont.val; }
 public boolean hasNext() { return !cont.isDone(); }
 }
 }
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �54

var fibonacci = new Generator<Integer>(() -> {
 Generator.yield(0);
 int a = 0;
 int b = 1;
 while(true) {
 Generator.yield(b);
 var sum = a + b;
 a = b;
 b = sum;
 }
});

for (var num : fibonacci) {
 System.out.println(num);
 if (num > 10_000) break;
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �55

var greetedPrimes = new Generator<String>(() -> {
 for (int n = 0; ; n++)
 if (isPrime(n)) {
 var greeting = Console.readLine();
 Generator.yield(greeting + ": " + n);
 }
});

Fiber.schedule(()-> {
 for (var x : greetedPrimes)
 System.out.println(x);
}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

https://
wiki.openjdk.java.net
/display/loom/

�56

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. �58Confidential – Oracle Internal

Q&A
 58

