
Continuous Profiling in
Production: What, Why and How

Richard Warburton (@richardwarburto)
Sadiq Jaffer (@sadiqj)

https://www.opsian.com

Why Performance Tools Matter
Development isn’t Production

Profiling vs Monitoring
Continuous Profiling

Conclusion

Known Knowns

Known Unknowns

Unknown Unknowns

Why Performance Tools Matter
Development isn’t Production

Profiling vs Monitoring
Continuous Profiling

Conclusion

Development isn’t Production

Performance testing in development can be easier

May not have access to production

Tooling often desktop-based

Not representative of production

Unrepresentative Hardware

vs

Unrepresentative Software

Unrepresentative Workloads

vs

The JVM may have very different behaviour in production

Hotspot does adaptive optimisation

Production may optimise differently

Why Performance Tools Matter
Development isn’t Production

Profiling vs Monitoring
Continuous Profiling

Conclusion

Ambient/Passive/System Metrics

Preconfigured Numerical Measure

CPU Time Usage / Page-load Times

Cheap and sometimes effective

Logging
Records arbitrary events emitted by the system being monitored

log4j/slf4j/logback

Logs of GC events

Often manual, aids system understanding, expensive

Coarse Grained Instrumentation

Measures time within some instrumented section of the code

Time spent inside the controller layer of your web-app or performing SQL queries

More detailed and actionable though expensive

Production Profiling

What methods use up CPU time?

What lines of code allocate the most objects?

Where are your CPU Cache misses coming from?

Automatic, can be cheap but often isn’t

Where Instrumentation can be blind in the Real World

Problem: every 5 seconds an HTTP endpoint would be really slow.

Instrumentation: on the servlet request, didn’t even show the pause!

Cause: Tomcat expired its resources cache every 5 seconds, on load one resource

scanned the entire classpath

Surely a better way?

Not just Metrics - Actionable Insights

Diagnostics aren’t Diagnosis

What about Profiling?

Why Performance Tools Matter
Development isn’t Production

Profiling vs Monitoring
Continuous Profiling

Conclusion

How to use Continuous Profilers

1) Extract relevant time period and apps/machines

2) Choose a type of profile: CPU Time/Wallclock Time/Memory

3) View results to tell you what the dominant consumer of a resource is

4) Fix biggest bottleneck

5) Deploy / Iterate

CPU Time vs Wallclock Time

You need both CPU Time and Wallclock Time

CPU - Diagnose expensive computational hotspots and inefficient algorithms

Spot code that should not be executing but is ...

Wallclock - Diagnose blocking that stops CPU usage

e.g blocking on external IO and lock contention issues

Profiling Hotspots

Profiling Treeviews

Profiling Flamegraphs

Instrumenting Profilers

Add instructions to collect timings (Eg: JVisualVM Profiler)

Inaccurate - modifies the behaviour of the program

High Overhead - > 2x slower

Sampling/Statistical Profilers

WebServerThread.run()

Controller.doSomething() Controller.next()

Repo.readPerson()

new Person()

View.printHtml() ??? ???

Safepoints

Mechanism for bringing Java application threads to a halt

Safepoint polls added to compiled code read known memory location

Protecting memory page triggers a segfault and suspends threads

Safepoint Bias

 WebServerThread.run

 Controller.doSomething Controller.next()

 Repo.readPerson

 new Person

 View.printHtml ???

Safepoint Bias after Inlining

 Repo.readPerson

 new Person

 View.printHtml ??? ???

 WebServerThread.run

 Controller.doSomething Controller.next()

Time to Safepoint

-XX:+PrintSafepointStatistics

Th
re

ad
s

Safepoint poll

VM
 O

pe
ra

tio
n

Statistical Profiling in Java

Problem: getAllStackTraces is expensive to do frequently and inaccurate, also only
gives us Wallclock time

Need ways to:

1. Interrupt application
2. Sample resource of interest

Advanced Statistical Profiling in Java

● Interrupt with OS signals

○ Delivered to handler on only one thread

○ Lightweight

● Sample resource of interest

○ Use AsyncGetCallTrace to sample stack

○ Examine JVM internals for other resources

Advanced Statistical Profiling in Java

Approach not used by existing profilers (VisualVM and desktop commercial

alternatives)

Can give very low overheads (<1%) for reasonable sampling rates

People are put off by practical as
much as technical issues

Barriers to Ad-Hoc Production Profiling

Generally requires access to
production

Process involves manual work - hard
to automate

Low-overhead open source profilers
without commercial support

What if we profiled all the time?

Historical Data

Allows for post-hoc incident analysis

Enables correlation with other data/metrics

Performance regression analysis

Putting Samples in Context

Application version

Environment parameters (machine type, CPU, location, etc.)

Ad-hoc profiling we can’t do this

How to implement Continuous Profiling

Google-wide profiling
Article: Google-Wide Profiling: A Continuous Profiling Infrastructure for Data
Centers

Profiling data and binaries collected, processed and made available for
browser-based reporting

“The system has been actively profiling nearly all machines at Google for several
years”

https://ai.google/research/pubs/pub36575

https://ai.google/research/pubs/pub36575

Self-build
● Open source Java profilers suitable for production

○ Async-profiler

○ Honest profiler

○ Flight Recorder

● Need to collect and store profiles in a database

● Tools for retrieving and visualising stored profiling data
○ Browser-based

○ Command line

Opsian - Continuous Profiling

Opsian
Aggregation

service

Web Reports
JVM Agents

Summary

It’s possible to profile in production with low overhead

To overcome practical issues we can profile production all the time

We gain new capabilities by profiling all the time

Why Performance Tools Matter
Development isn’t Production

Profiling vs Monitoring
Continuous Profiling

Conclusion

Performance Matters

Development isn’t Production

Metrics can be unactionable

Instrumentation has high overhead

Continuous Profiling provides insight

We need an attitude shift on profiling
+ monitoring

ContinuousProactive
not Reactive

Systematic
not Ad Hoc

Please do Production Profiling.
All the time.

Any Questions?
https://www.opsian.com/

Live Demo?

Links
Collector - Flame Graph

Collector - Hot Spots

https://app.beta.opsian.com/app/prod_collector/report/flame_graph?start=2018-12-11T17:08:00&end=2018-12-11T20:08:00&sampleTimeType=PROCESS&tz=Europe/London
https://app.beta.opsian.com/app/prod_collector/report/hot_spots?start=2018-12-09T17:08:00&end=2018-12-12T20:08:00&sampleTimeType=PROCESS&tz=Europe/London

The End

Existing tools are blind

Traditional profilers don’t work in production

Metrics aren’t code level visibility

Instrumentation must be done ahead of time

How do we help?

Reduce the risk of change

Help you scale with happy customers

Cut the cost of infrastructure

Production Visibility

Actionable reports for causes of latency and CPU usage

From high-level reports to line-level granularity

Very low overhead (<1%) and always-on

Reduce the risk of change

On-demand performance comparison between releases

Accelerate root-cause analysis for performance regressions

Improve Developer Productivity

Source: ZT RebelLabs Developer Productivity Report 2017

Understand don’t Overwhelm

Too Little

You can’t understand production
problems

Too Much

Needle in a Haystack

You are the problem (overhead)

Normalisation of Deviance

“Some of the tests always fail, so we just ignore them.”

“Some of the alerts get triggered regularly, so we just ignore them.”

Alert false positives have a cost

Open Source Java Profilers

High Overhead

VisualVM

hprof

Twitter’s CPUProfile

Anything GetAllStackTraces based

Low Overhead

Async Profiler

Honest Profiler

Java Mission Control

Unactionable Metrics

Many metrics provide pretty graphs but don’t progress treatment

Profiling Support in the Linux Kernel

perf and eBPF

perf-map-agent for the JVM

Hardware events (L1/L2/L3 cache misses, branch mispredictions, etc.)

Take heed: potential security issues

Customer Experience

Amazon: 100ms of latency costs 1% of sales

Google: 500ms seconds in search page generation time drops traffic by 20%

Responsive Applications make more Money

Stop Costly Downtime

Reduce Costs

Performance Optimisation Cycle

Implement a FixDeploy and Validate Fix

Problem Reported Understand Cause /
Bottleneck

What’s Hard?

Implement a FixDeploy and Validate Fix

Problem Reported Understand Cause /
Bottleneck

How do you find performance
bottlenecks?

