Programming the Cloud
with TypeScript

Luke Hoban

Why am I interested in this topic?

TypeSCrl pt amazon ‘ Ec2

webservices”
1+ TC._
JS 39 ES

Q) VS Code puluml

Evolution of JavaScript

@-Q-@)

Browsers Node.js
DOM APIs OS APIs AWS/Azure/etc APls
SPA Frameworks HTTP App/API Cloud App

Frameworks Frameworks

Infrastructure as Code

Infrastructure as €ede Text

Infrastructure as Software

An Analogy

pushq
movq
subq
leaq
mov 1
movq
movq
movb
callq
xorl
mov 1
mov 1
addq
Popq
retq

%rbp

%srsp, %rbp

$32, Srsp
71(%rip), %rdi
$0, -4(%rbp)
$13, -16(%rbp)
-16(%rbp), %rsi
$0, %al

13

%Becx, %ecx
%seax, —20(%rbp)
%ecx, %eax

$32, %rsp

%rbp

What’s missing?

Variables

Loops

Functions
Abstraction

C Standard Library
Types

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Infrastructure as Code

AWSTemplateFormatVersion: '2010-09-09'

Descr
Param Effect: Allow

B At

const lambda = new AWS.Lambda();
S
Properties:

W Acticnme "lombhda.T Lar +3oam

out)
s StatusCode: 200
Integration:

R Type: AWS_PROXY

1 B H IntegrationHttpMethod: POST

PassthroughBehavior: WHEN_NO_TEMPLATES
Arse Uri: !Sub
arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions/${lambdaArn}/invocations
lambdaArn: !GetAtt botLambda.Arn
1 DependsOn: botLambdaPermission
deployment:
Type: "AWS::ApiGateway::Deployment"
Properties:

RestApiId: !Ref api
StageName: DummyStage
DependsOn: anyMethod

aQ

stage:
Type: "AWS::ApiGateway::Stage"
Properties:
RestApiId: !Ref api
StageName: bot

- M e W

Demo

Infrastructure as Software

Other Similar Approaches

® ® . The Software Defined Delivery X +

& C @& https://sdd-manifesto.org * B8 O

ATOMIST

The Software Defined Delivery Manifesto

Last Updated: December 12, 2018 - v0.10

We recognize that delivering useful software shapes our world. We recognize that AW S c D K

code is the best way to specify precise action. We recognize that code is only useful
when we deliver it.

Delivery is not a detail, it is our job. Now is the time to apply our core skills to our
own work. Now is the time to engineer our delivery. We divide our work between
ourselves and computers: humans for decisions, and automation for tasks.

Process Models

OO O)

Page Process Stack
Transient Finite lifetime Lives “forever”
Script tags ELF binaries Desired State

Stateless Largely stateless Fundamentally Stateful

11

Implications of Managed Services

Pre-Cloud

Docker

PM2

DataDog

Cloud Native

|

>
|

Lambda
APl Gateway }

-

EKS

> CloudWatch }

Aurora }

Demo

Breaking Down Barriers Between App and Infrastructure

Programming at the level of
Architecture Diagrams

Demo

Programming at the level of Architecture Diagrams

Programming the Cloud

Continue the march of JavaScript from Browser to Server to Cloud

Apply Software Engineering to Cloud Infrastructure

Work at the right level of abstraction - raw infra or “architecture diagram”
Bridge the gap between App and Infra

A different kind of application model - “stacks” instead of processes

Thanks!

lllllllllllllllllll

https://twitter.com/pulumicorp

