Simulating Chemistry with Quantum Computing

Peter Morgan www.deeplp.com

Outline of Talk

- What is Quantum Computing
 - Background
 - Hardware
 - Frameworks
 - Applications
- Simulating Chemistry
 - Classical Frameworks
 - Quantum Frameworks
- Qiskit Walkthrough
 - Application
 - Code example
- Conclusions

Early Pioneers -1994

(top, left) Richard Jozsa, William K. Wootters, Charles H. Bennett. (bottom, left) Gilles Brassard, Claude Crépeau, Asher Peres. Photo: André Berthiaume.

And that's a wrap for #qip2019! Thanks to everyone involved for a great conference, we hope you enjoyed it!

Classical vs Quantum – What's the Difference?

Classical information

Quantum States

$$|+\theta_{j}\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{i\theta_{j}} |1\rangle)$$
$$|-\theta_{j}\rangle = \frac{1}{\sqrt{2}} (|0\rangle - e^{i\theta_{j}} |1\rangle)$$

Quantum Weirdness

Types of Hardware

Hardware Companies

IBM Q System One

Inside Outside

Cyrogenic System

Qubit Timeline

Quantum computers are getting more powerful

Number of qubits achieved by date and organization 1998 - 2020*

Quantum Computer Architecture

Quantum Gates & Circuits

Quantum Algorithms

AHQC Algorithm	Goal(s)	Optimization Problem
Variational Quantum	Estimate molecular properties	Minimize expected energy
Eigensolver (VQE) [20, 23]	(e.g. energies)	
Quantum Approximate	Estimate maximum cut of	Maximize expected cut size
Optimization Algorithm (QAOA) [5]	a graph	
Quantum Autoencoder (QAE) [7]	Design a circuit for compressing	Maximize average fidelity
	a quantum data set	
Quantum Variational Error	Design device-tailored quantum	Maximize average fidelity
Corrector (QVECTOR) [29]	error correction scheme	
Variational Quantum	Find a circuit that classifies	Maximize log likelihood
Classification [11, 13, 15]	classical data points	
Variational Quantum Factoring (VQF) [30]	For a given biprime find	Minimize quartic boolean
	its prime factors	polynomial

Frameworks

Applications

Startups

Microsoft welcomes collaboration with leading quantum startups

Simulating Chemistry

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical..."
Richard Feynman Simulating Physics with
Computers, 1981.

Applications

Enabling the design of

- New materials
- Medicines
- Industrial catalysts
- High temperature superconductors

Periodic Table

Molecular
Dynamics
(e.g, protein
folding)

Molecular Dynamics Simulation Procedure

Classical Frameworks

PySFC

Gaussian 16

Psi4

NWChem

PyQuante

OpenMM

IBM Qiskit Aqua

Quantum Frameworks Google OpenFermion

Microsoft QDK Chem library

Project Q FermLib

Qiskit Aqua

- Contains a library of quantum algorithms on which applications for near-term quantum computing are built
- Designed to be extensible employs a pluggable framework where quantum algorithms can easily be added
- It currently allows the user to experiment on the following domains:
 - Chemistry
 - Optimization
 - Finance
 - Al
- pip install qiskit-aqua
- https://github.com/Qiskit/qiskit-aqua

Qiskit Chemistry

- End-to-end stack that enables experimenting with chemistry problems on near-term (NISQ) quantum computers
- Translates chemistry-specific problems defined via classical drivers into inputs for Aqua algorithms
- Modular and extensible
- Allows users with different levels of experience to execute chemistry experiments and contribute to the quantum computing chemistry software stack
- pip install qiskit-chemistry
- https://github.com/Qiskit/qiskit-chemistry

```
mport numpy as np
rom qiskit_chemistry import QiskitChemis
iskit_chemistry_dict = {
  "driver": { "name": "PYSCF" },
  "PYSCF": { "atom": "", "basis": "sto3g"
  "operator": {
     "name": "hamiltonian",
     "qubit_mapping": "parity",
     "two_qubit_reduction": True,
     "freeze_core": True,
     "orbital_reduction": [-3, -2]
```

Energy Calculations

Code Demos

- Hello Quantum World
 https://github.com/Qiskit/qiskit-tutorials/blob/master/community/hello_world/quantum_world.ipynb
- Quantum Chemistry with VQE
 https://nbviewer.jupyter.org/github
 /Qiskit/qiskit tutorials/blob/master/qiskit/aqua/c
 hemistry/dissociation_profile_of_m
 olecule.ipynb

Conclusions

- We are waiting on quantum hardware development
- Meanwhile working on software stack plus quantum algorithms
- NISQ noisy without error correction (next 5-10 years?)
- After this error corrected, and maybe topological (error free) qubits?
- Quantum computers will revolutionize everything – including chemistry
- Nature is quantum mechanical (dammit)!

References - Blogs

- Pistoia, M. et al, <u>Aqua 0.4: Improved Programmatic Interface, Better Performance, Richer Finance Applications, and More</u>, IBM Qiskit, Jan 2, 2019
- <u>Simulating nature with the new Microsoft Quantum Development Kit</u> <u>chemistry library</u>, Microsoft Quantum Team, Dec 4, 2018
- Kandala A. et al, <u>How to measure a molecule's energy using a quantum computer</u>, IBM Research, Sept 2017
- Babbush, Ryan, <u>Towards an exact (quantum) description of chemistry</u>, Google Al, July 2016

References - Papers

- McClean, J. et al, OpenFermion: The Electronic Structure Package for Quantum Computers, Feb 27, 2019, https://arxiv.org/abs/1710.07629
- McArdle, S. et al, Quantum Computational Chemistry, Jan 17, 2019, https://arxiv.org/abs/1808.10402
- Cao, Y. et al, Quantum Chemistry in the Age of Quantum Computing, Dec 28, 2018, https://arxiv.org/abs/1812.09976
- Olson, J. et al, *Quantum Information and Computation for Chemistry*, June 10, 2017, https://arxiv.org/abs/1706.05413

Qiskit Tutorials

- Qiskit Tutorials
 https://github.com/Qiskit/qiskit-tutorials
- Qiskit Aqua Chemistry
 https://nbviewer.jupyter.org/github/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/chemistry/index.ipynb

You're thinking too classically.

#IBMQ