Graal: Not just a new JIT for the JVM.

Duncan MacGregor

Consulting Member of Technical Staff
Oracle Labs

March 4th 2019

ORACLE

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a

commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, timing,
and pricing of any features or functionality described for Oracle’s products may
change and remains at the sole discretion of Oracle Corporation.

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | Confidential - Oracle Internal/Restricted/Highly Restricted

2

The problem

Why do we need a new JIT

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

We’d like to write code like this

public int testMethod() {
return Arrays.stream(myArray)
.map(x -> x + 1)
.map(x -> x + 2)
.map(x -> x + 5)
.reduce (0, Integer::sum);

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserve

It has lots of good features

* |t’s easy to write

* |t’s easily to compose stream functions together, or decompose this
method

* |t separates intent and strategy so it can easily change for large
arrays, or more complex map operations

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So why don’t we write code like this?

* Performance

* |If you write a micro benchmark in this style and compare it to
performing the operations using loops and arrays you’ll see a
substantial performance difference

» BUT it’s much easier to make mistakes when writing the array code

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So what’s going on in this code?

* Arrays.stream creates a spliterator
* And then creates a stream from that...
» The map operation creates a stream from that...
* Ditto for the next two map operations...
* Then finally reduce creates a terminal operation

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What does a JIT need to do for this to be fast?
* Inlining

* Escape analysis

 Turn it into a simple loop

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

How well does C2 do at this?

* Inlining
* |t actually manages to inline a lot of this work
- Escape analysis
* |t still creates several of the intermediate objects

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

How well does Graal do at this?

* Inlining

* Far more is inlined into the method which means...
- Escape analysis

* Much more has been removed!
* |t manages to extract a simple loop

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What effect does that have?

A V e
9
5 3
0
R
—
(D]
N -
2 2
s \
e
+—
=
Q.
N -
(@)
= 1
@)
——
N -
-
0
2 4 6 8

lteration

= HotSpot = GraalVM

https://medium.com/graalvm/stream-api-performance-with-graalvm-be6cfe7fbb52

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 11

ORACLE

So what’s stopping us using this everywhere?

* Notice the time it took go get fast
* Graal is written in Java
* We have to JIT our JIT
* We use space on the heap
* We may pollute type profiles in your code

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

You can try this at home

» Graal is already in OpenJDK 11

* You can enable it with
-XX:+UnlockExperimentalVMOptions
-XX:+UseJVMCICompiler
added to your java command line

* You can also see how long it takes to compile itself by adding
-XX:+BootstrapJVCMI

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

50 now we have a new problem

How can we have Graal without the downsides

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

14

Graal isn’t just a JIT

» Many parts of a compiler are the same whether you do the
compilation ahead of time or just in time

* You can do ahead of time compilation using jaotc
» But what does ahead of compilation mean for Java?

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Just in time compilation means

Vm Runtime

-
MyClass.class
_

-
MyOtherClass.class
_

e
graal,module
_

-
java.base.module

-

Class loader

Compiler interface

U U Y

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

16

Compiling a class to a shared library

Vm Runtime

~
MyClass.so
_

-
MyOtherClass.class
_

e
graal,module
_

-
java.base.module

-

Class loader

Compiler interface

U Y U

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

17

Building a standalone executable

Vm Runtime
MyClass

MyOtherClass

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserve

Does either of these really help with Graal?

» Compiling to a library

* Avoids having to JIT the compiler

» Still uses the heap
» Compiling to an a standalone executable

* Doesn’t leave us with a JIT we can use in the JVM
* |s there a useful middle way?

ORACLE

Compiling to a self contained shared library

ﬁ

MyClass.class
_

-
MyOtherClass.class
_

~

java.base.module

U U .

Vm Runtime

Class loader

New Compiler interface

libgraal.so

_
ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

20

Compiling to a self contained shared library

ﬁ Vm Runtime

MyClass.class
_

-
MyOtherClass.class
_

~

java.base.module

libgraal.so

Class loader

GC for Graal

U U .

New Compiler interface

_
ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

21

Third problem

How do we turn a Java library into something we can use?

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

22

Native images

Full AOT compilation to machine code
Works with memory management
Secure execution (e.g., bounds checks)
Embeddable with native applications

dynamically
executed

native
precompiled

ORACLE

Java

HotSpot

Java

)

SVM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

23

Native image generation

Static Analysis Ahead-of-Time

Compilation

in 9

All Java classes from Reachable methods,
Your application, JDK, fields, and classes
and Substrate VM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Machine Code

Image Heap

Application running
without dependency on JDK
and without Java class loading

24

Native image lifecycle

Image build time

Static Analysis Ahead-of-Time
Compilation

_ — Machine Code
JDK
T Image Heap
Substrate VM > >
ELF / MachO Binary
All Java classes from Reachable methods, Application running
Your application, JDK, fields, and classes without dependency on JDK
and Substrate VM and without Java class loading

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Runtime

25

:Can we builc;l m

ORACLE

opyright © 2 19, Oracle and/or its affiliates. All rights reserved. | 26

ORACLE

GraalVM.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

27

Graal VM on the JVM Architecture

L S

Java HotSpot VM

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

28

Graal VM on the JVM Architecture

n Q
o@d 'S

Cle

Js @ python

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Engine integration native and managed

Open] DK nNe de ORACLE’ R standalone

DATABASE MySolL:
ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 30

oracle / graal

® Unwatch~ 250

<> Code (D Issues 63 Il Pull requests 5 L1 Insights

GraalVM: Run Programs Faster Anywhere Af https://www.graalvm.org

polyglot vm java javascript

{D 24,763 commits

Branch: master v New pull request

python r ruby ©

P 8 branches © 90 releases

Create new file = Upload files = Find file Clone or download ~

1 cstancu [GR-10052] Reset lazily initialized cache fields of collection classes.

i\ ci_includes
i compiler

i docs

| examples
i regex

i sdk

8 substratevm

i tools

ORACLE

Build Graph I/O API Javadoc explicitly

[GR-9933] Compilation fails with a Stackoverflow error.

Moved readme to the top-level directory

added Classpath Exception to mx files

TRegex: removed some duplicated code from array buffer helper classes
Added ability configure caching per Source.

Reset lazily initialized cache fields of collection classes.

Make source hashCode deterministic again.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

¥ Unstar | 4,931 Fork 265

42 84 contributors

Latest commit f85f8b4 an hour ago

5 months ago
7 hours ago

a month ago
19 days ago
7 days ago

4 days ago
an hour ago

4 days ago

31

Community Edition (CE)

GraalVM CE is available for free for development
and production use. It is built from the GraalVM
sources available on GitHub. We provide pre-
built binaries for GraalVM CE for Linux on x86

64-bit systems.

DOWNLOAD FROM GITHUB

ORACLE

Enterprise Edition (EE)

GraalVM EE provides additional performance, security,
and scalability relevant for running critical applications
in production. It is free for evaluation uses and
available for download from the Oracle Technology
Network. We provide binaries for GraalVM EE for Linux
or Mac OS X on x86 64-bit systems.

DOWNLOAD FROM OTN

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

32

Practical Partial Evaluation
for High-Performance Dynamic Language Runtimes

Thomas Wiirthinger® Christian Wimmer® Christian Humer* Andreas Wo8*
Lukas Stadler* Chris Seaton® Gilles Duboscq® Doug Simon* Matthias Grimmer'

*Oracle Labs JrInstitute for System Software, Johannes Kepler University Linz, Austria

{thomas.wuerthinger, christian.wimmer, christian.humer, andreas.woess, lukas.stadler, chris.seaton,
gilles.m.duboscq, doug.simon}@oracle.com matthias.grimmer@jku.at

http://chrisseaton.com/rubytruftle/pldi17-truffle/pldi17-truffle.pdf

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

33

sbt > clean; compile;

1.6

1.4

1.2

(WY

Speedup
o
00

0.4

0.2

ORACLE

Shapeless

1.26

1.35 1.35
1 “ HotSpot
M GraalVM CE
B GraalVM EE
Scalac 2.13 Akka

https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86¢5c0857fa3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 34

16

13.67

14

8 98 HotSpot

6.72

Speedup
oo

B Native

scalap vector re2s

https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86c5c0857fa3

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance: Graal VM

Speedup, higher is better

5
4.5
4.1 M Graal
: M Best Specialized Competition
3
2
1.2
L 1.02 0.85 0.9
0 -

Java

ORACLE

Scala

Ruby R

Performance relative to:

Native JavaScript

HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

36

16

14 13.4x
12.4x
12
10 9.2x 9.2x
8.7X
8 7.6x
6.6X
6 %X 5.4x ;
4.7x
2.7X
4
2.3x
2 I I 1.3x 1.1x
1l 1NNy Ll il s
o > & .
v '2> i < R &
& F N ST S
© O ¢ & S & O > S & &

B Nashorn 1.8.0_161

ORACLE

'Rhino 1.7.7.2 ™ GraalVM 1.0.0 RC4 CE M GraalVM 1.0.0 RC4 EE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

6.0x

37

The Computer Language Benchmarks Game

00 CRuby 2.300JRuby 9.1.1200 TruffleRuby -
30 >
2
€ 25| 5
o
8
v 20 -
%
° 15 _ -
Q. E3
=
§ 10 :
)
SDI:“ Dﬂ[
ool e 11 M| 1 call Al el
¥ @ X & & N & & &) &
\é@* é\\% 8{9 b:O\'b (b\,(\ &&\Q & }\d bék \,@\ Q:oo 3 <@
- ‘\fbo ﬂe’ 00\) 5 _*_'6\ zdé’b ,DQ be' . Q'b‘
\}\ @ \O\
&'b gQ

9/63
https://www.youtube.com/watch?v=mRKjWrNJ8DI

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

38

Try this out for yourselves

* Try using Graal in OpenJDK

* Add

-XX:+UnlockExperimentalVMOptions
-XX:+UseJVMCICompiler
to your java command line

* Try downloading GraalVM from graalvm.org

» Look under graalvm.org/docs for Getting Started guides and
examples

* Follow @graalvm on Twitter

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

39

http://graalvm.org
http://graalvm.org/docs

Team

Oracle

Florian Angerer
Danilo Ansaloni
Stefan Anzinger
Martin Balin
Cosmin Basca
Daniele Bonetta
Dusan Balek
Matthias Brantner
Lucas Braun

Petr Chalupa
Jurgen Christ
Laurent Daynés
Gilles Duboscq
Svatopluk Dédic
Martin Entlicher
Pit Fender
Francois Farquet
Brandon Fish
Matthias Grimmer
Christian Haubl
Peter Hofer
Bastian Hossbach
Christian Humer
Tomas Hurka
Mick Jordan

ORACLE

Oracle (continued)
Vojin Jovanovic
Anantha Kandukuri
Harshad Kasture
Cansu Kaynak
Peter Kessler
Duncan MacGregor
Jiri Marsik

Kevin Menard
Miloslav Metelka
Tomas Mysik

Petr Pisl

Oleg Pliss

Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz
Benjamin Schlegel
Chris Seaton

Jiri Sedlacek

Doug Simon
Stépan Sindelar
Zbynék Slajchrt
Boris Spasojevic
Lukas Stadler
Codrut Stancu

Oracle (continued)
Jan Stola

Tomas Stupka
Farhan Tauheed
Jaroslav Tulach
Alexander Ulrich
Michael Van De Vanter
Aleksandar Vitorovic
Christian Wimmer
Christian Wirth

Paul Wogerer

Mario Wolczko
Andreas WoB
Thomas Wirthinger
Tomas Zezula

Yudi Zheng

Red Hat
Andrew Dinn
Andrew Haley

Intel
Michael Berg

Twitter
Chris Thalinger

Oracle Interns
Brian Belleville
Ondrej Douda
Juan Fumero
Miguel Garcia
Hugo Guiroux
Shams Imam
Berkin Ilbeyi
Hugo Kapp
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

Tristan Overney
Aleksandar Pejovic
David Piorkowski
Philipp Riedmann
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
David Leibs

Adam Welc

Till Westmann

JKU Linz
Hanspeter Mossenbock
Benoit Daloze
Josef Eisl

Thomas Feichtinger
Josef Haider
Christian Huber
David Leopoldseder
Stefan Marr

Manuel Rigger
Stefan Rumzucker
Bernhard Urban

TU Berlin:
Volker Markl
Andreas Kunft
Jens Meiners
Tilmann Rabl

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso

Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine

Michael Franz

Yeoul Na

Mohaned Qunaibit
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Jan Vitek

Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund
Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis

Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland

Walter Binder
Sun Haiyang

40

ORACLE

