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Safe Harbor Statement

The following is intended to outline our general product direction. It is intended 
for information purposes only, and may not be incorporated into any contract. It 
is not a   
commitment to deliver any material, code, or functionality, and should not be 
relied upon in making purchasing decisions. The development, release, timing, 
and pricing of any features or functionality described for Oracle’s products may 
change and remains at the sole discretion of Oracle Corporation.
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The problem
Why do we need a new JIT
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We’d like to write code like this
public int testMethod() {  
  return Arrays.stream(myArray)  
    .map(x -> x + 1)  
    .map(x -> x + 2)  
    .map(x -> x + 5)  
    .reduce(0, Integer::sum);  
}
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It has lots of good features
• It’s easy to write 
• It’s easily to compose stream functions together, or decompose this 

method 
• It separates intent and strategy so it can easily change for large 

arrays, or more complex map operations
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So why don’t we write code like this?
• Performance 
• If you write a micro benchmark in this style and compare it to 

performing the operations using loops and arrays you’ll see a 
substantial performance difference 
• BUT it’s much easier to make mistakes when writing the array code
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So what’s going on in this code?
• Arrays.stream creates a spliterator 
• And then creates a stream from that… 
• The map operation creates a stream from that… 
• Ditto for the next two map operations… 
• Then finally reduce creates a terminal operation

 7



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |

What does a JIT need to do for this to be fast?
• Inlining 
• Escape analysis 
• Turn it into a simple loop
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How well does C2 do at this?
• Inlining 
• It actually manages to inline a lot of this work 
• Escape analysis 
• It still creates several of the intermediate objects
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How well does Graal do at this?
• Inlining 
• Far more is inlined into the method which means… 
• Escape analysis 
• Much more has been removed! 
• It manages to extract a simple loop
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What effect does that have?
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https://medium.com/graalvm/stream-api-performance-with-graalvm-be6cfe7fbb52
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So what’s stopping us using this everywhere?
• Notice the time it took go get fast 
• Graal is written in Java 
• We have to JIT our JIT 
• We use space on the heap 
• We may pollute type profiles in your code
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You can try this at home
• Graal is already in OpenJDK 11 
• You can enable it with  
-XX:+UnlockExperimentalVMOptions  
-XX:+UseJVMCICompiler  
added to your java command line 
• You can also see how long it takes to compile itself by adding 
-XX:+BootstrapJVCMI
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So now we have a new problem
How can we have Graal without the downsides
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Graal isn’t just a JIT
• Many parts of a compiler are the same whether you do the 

compilation ahead of time or just in time 
• You can do ahead of time compilation using jaotc 
• But what does ahead of compilation mean for Java?
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Just in time compilation means

 16
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Compiling a class to a shared library
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Building a standalone executable
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Does either of these really help with Graal?
• Compiling to a library 
• Avoids having to JIT the compiler 
• Still uses the heap 
• Compiling to an a standalone executable 
• Doesn’t leave us with a JIT we can use in the JVM 
• Is there a useful middle way?
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Compiling to a self contained shared library
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Compiling to a self contained shared library
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Third problem
How do we turn a Java library into something we can use?
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Native images
• Full AOT compilation to machine code 
• Works with memory management 
• Secure execution (e.g., bounds checks) 
• Embeddable with native applications
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Native image generation
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Image build time Runtime 

Native image lifecycle
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Can we build more with this?
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Graal VM on the JVM Architecture

Java HotSpot VM

Graal Compiler
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Graal VM on the JVM Architecture

Java HotSpot VM

Graal Compiler

Truffle Framework

Sulong 
(LLVM)



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  | Confidential – Oracle Internal/Restricted/Highly Restricted  30

standalone

Automatic transformation of interpreters to compilers

Engine integration native and managed



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |  31



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |  32



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |  33

http://chrisseaton.com/rubytruffle/pldi17-truffle/pldi17-truffle.pdf
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sbt > clean; compile;

https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86c5c0857fa3
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https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86c5c0857fa3
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DEMO
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https://www.youtube.com/watch?v=mRKjWrNJ8DI
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Try this out for yourselves
• Try using Graal in OpenJDK 
• Add  
-XX:+UnlockExperimentalVMOptions  
-XX:+UseJVMCICompiler  
to your java command line 

• Try downloading GraalVM from graalvm.org 
• Look under graalvm.org/docs for Getting Started guides and 

examples 
• Follow @graalvm on Twitter
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http://graalvm.org
http://graalvm.org/docs
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