
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted

Graal: Not just a new JIT for the JVM.

Duncan MacGregor
Consulting Member of Technical Staff
Oracle Labs
March 4th 2019

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a  
commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, timing,
and pricing of any features or functionality described for Oracle’s products may
change and remains at the sole discretion of Oracle Corporation.

Confidential – Oracle Internal/Restricted/Highly Restricted 2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The problem
Why do we need a new JIT

 3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

We’d like to write code like this
public int testMethod() {  
 return Arrays.stream(myArray)  
 .map(x -> x + 1)  
 .map(x -> x + 2)  
 .map(x -> x + 5)  
 .reduce(0, Integer::sum);  
}

 4

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

It has lots of good features
• It’s easy to write
• It’s easily to compose stream functions together, or decompose this

method
• It separates intent and strategy so it can easily change for large

arrays, or more complex map operations

 5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So why don’t we write code like this?
• Performance
• If you write a micro benchmark in this style and compare it to

performing the operations using loops and arrays you’ll see a
substantial performance difference
• BUT it’s much easier to make mistakes when writing the array code

 6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So what’s going on in this code?
• Arrays.stream creates a spliterator
• And then creates a stream from that…
• The map operation creates a stream from that…
• Ditto for the next two map operations…
• Then finally reduce creates a terminal operation

 7

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What does a JIT need to do for this to be fast?
• Inlining
• Escape analysis
• Turn it into a simple loop

 8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

How well does C2 do at this?
• Inlining
• It actually manages to inline a lot of this work
• Escape analysis
• It still creates several of the intermediate objects

 9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

How well does Graal do at this?
• Inlining
• Far more is inlined into the method which means…
• Escape analysis
• Much more has been removed!
• It manages to extract a simple loop

 10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What effect does that have?

 11

https://medium.com/graalvm/stream-api-performance-with-graalvm-be6cfe7fbb52

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So what’s stopping us using this everywhere?
• Notice the time it took go get fast
• Graal is written in Java
• We have to JIT our JIT
• We use space on the heap
• We may pollute type profiles in your code

 12

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

You can try this at home
• Graal is already in OpenJDK 11
• You can enable it with  
-XX:+UnlockExperimentalVMOptions  
-XX:+UseJVMCICompiler  
added to your java command line
• You can also see how long it takes to compile itself by adding 
-XX:+BootstrapJVCMI

 13

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

So now we have a new problem
How can we have Graal without the downsides

 14

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Graal isn’t just a JIT
• Many parts of a compiler are the same whether you do the

compilation ahead of time or just in time
• You can do ahead of time compilation using jaotc
• But what does ahead of compilation mean for Java?

 15

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Just in time compilation means

 16

Vm Runtime

MyClass.class

MyOtherClass.class

graal,module

java.base.module

GC

Class loader

Compiler interface

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compiling a class to a shared library

 17

Vm Runtime

MyClass.so

MyOtherClass.class

graal,module

java.base.module

GC

Class loader

Compiler interface

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Building a standalone executable

 18

Vm Runtime

MyClass

MyOtherClass

GC

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Does either of these really help with Graal?
• Compiling to a library
• Avoids having to JIT the compiler
• Still uses the heap
• Compiling to an a standalone executable
• Doesn’t leave us with a JIT we can use in the JVM
• Is there a useful middle way?

 19

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compiling to a self contained shared library

 20

Vm Runtime

MyClass.class

MyOtherClass.class

java.base.module

GC

Class loader

New Compiler interface

libgraal.so

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compiling to a self contained shared library

 21

Vm Runtime

MyClass.class

MyOtherClass.class

java.base.module

GC

Class loader

New Compiler interface

libgraal.so

Graal

GC for Graal

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Third problem
How do we turn a Java library into something we can use?

 22

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Native images
• Full AOT compilation to machine code
• Works with memory management
• Secure execution (e.g., bounds checks)
• Embeddable with native applications

 23

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 24

Native image generation

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 25

Image build time Runtime

Native image lifecycle

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Can we build more with this?

 26

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 27

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 28

Graal VM on the JVM Architecture

Java HotSpot VM

Graal Compiler

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 29

Graal VM on the JVM Architecture

Java HotSpot VM

Graal Compiler

Truffle Framework

Sulong
(LLVM)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 30

standalone

Automatic transformation of interpreters to compilers

Engine integration native and managed

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 31

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 32

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 33

http://chrisseaton.com/rubytruffle/pldi17-truffle/pldi17-truffle.pdf

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 34

sbt > clean; compile;

https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86c5c0857fa3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 35

https://medium.com/graalvm/compiling-scala-faster-with-graalvm-86c5c0857fa3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 36

DEMO

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 37

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 38

https://www.youtube.com/watch?v=mRKjWrNJ8DI

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Try this out for yourselves
• Try using Graal in OpenJDK
• Add  
-XX:+UnlockExperimentalVMOptions  
-XX:+UseJVMCICompiler  
to your java command line

• Try downloading GraalVM from graalvm.org
• Look under graalvm.org/docs for Getting Started guides and

examples
• Follow @graalvm on Twitter

 39

http://graalvm.org
http://graalvm.org/docs

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 40

Team
Oracle
Florian Angerer
Danilo Ansaloni
Stefan Anzinger
Martin Balin
Cosmin Basca
Daniele Bonetta
Dušan Bálek
Matthias Brantner
Lucas Braun
Petr Chalupa
Jürgen Christ
Laurent Daynès
Gilles Duboscq
Svatopluk Dědic
Martin Entlicher
Pit Fender
Francois Farquet
Brandon Fish
Matthias Grimmer
Christian Häubl
Peter Hofer
Bastian Hossbach
Christian Humer
Tomáš Hůrka
Mick Jordan

Oracle (continued)
Vojin Jovanovic
Anantha Kandukuri
Harshad Kasture
Cansu Kaynak
Peter Kessler
Duncan MacGregor
Jiří Maršík
Kevin Menard
Miloslav Metelka
Tomáš Myšík
Petr Pišl
Oleg Pliss
Jakub Podlešák
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz
Benjamin Schlegel
Chris Seaton
Jiří Sedláček
Doug Simon
Štěpán Šindelář
Zbyněk Šlajchrt
Boris Spasojevic
Lukas Stadler
Codrut Stancu

JKU Linz
Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Josef Haider
Christian Huber
David Leopoldseder
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

TU Berlin:
Volker Markl
Andreas Kunft
Jens Meiners
Tilmann Rabl

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Michael Franz
Yeoul Na
Mohaned Qunaibit
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Walter Binder
Sun Haiyang

Oracle Interns
Brian Belleville
Ondrej Douda
Juan Fumero
Miguel Garcia
Hugo Guiroux
Shams Imam
Berkin Ilbeyi
Hugo Kapp
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash
Tristan Overney
Aleksandar Pejovic
David Piorkowski
Philipp Riedmann
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
David Leibs
Adam Welc
Till Westmann

Oracle (continued)
Jan Štola
Tomáš Stupka
Farhan Tauheed
Jaroslav Tulach
Alexander Ulrich
Michael Van De Vanter
Aleksandar Vitorovic
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger
Tomáš Zezula
Yudi Zheng

Red Hat
Andrew Dinn
Andrew Haley

Intel
Michael Berg

Twitter
Chris Thalinger

