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Safe Harbor Statement

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a

commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, timing,
and pricing of any features or functionality described for Oracle’s products may
change and remains at the sole discretion of Oracle Corporation.
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The problem

Why do we need a new JIT
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We’d like to write code like this

public int testMethod() {
return Arrays.stream(myArray)
.map(x -> x + 1)
.map(x -> x + 2)
.map(x -> x + 5)
.reduce (0, Integer::sum);
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It has lots of good features

* |t’s easy to write

* |t’s easily to compose stream functions together, or decompose this
method

* |t separates intent and strategy so it can easily change for large
arrays, or more complex map operations
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So why don’t we write code like this?

* Performance

* |If you write a micro benchmark in this style and compare it to
performing the operations using loops and arrays you’ll see a
substantial performance difference

» BUT it’s much easier to make mistakes when writing the array code
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So what’s going on in this code?

* Arrays.stream creates a spliterator
* And then creates a stream from that...
» The map operation creates a stream from that...
* Ditto for the next two map operations...
* Then finally reduce creates a terminal operation
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What does a JIT need to do for this to be fast?
* Inlining

* Escape analysis

 Turn it into a simple loop
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How well does C2 do at this?

* Inlining
* |t actually manages to inline a lot of this work
- Escape analysis
* |t still creates several of the intermediate objects
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How well does Graal do at this?

* Inlining

* Far more is inlined into the method which means...
- Escape analysis

* Much more has been removed!
* |t manages to extract a simple loop
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What effect does that have?
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https://medium.com/graalvm/stream-api-performance-with-graalvm-be6cfe7fbb52
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So what’s stopping us using this everywhere?

* Notice the time it took go get fast
* Graal is written in Java
* We have to JIT our JIT
* We use space on the heap
* We may pollute type profiles in your code
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You can try this at home

» Graal is already in OpenJDK 11

* You can enable it with
-XX:+UnlockExperimentalVMOptions
-XX:+UseJVMCICompiler
added to your java command line

* You can also see how long it takes to compile itself by adding
-XX:+BootstrapJVCMI
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50 now we have a new problem

How can we have Graal without the downsides
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Graal isn’t just a JIT

» Many parts of a compiler are the same whether you do the
compilation ahead of time or just in time

* You can do ahead of time compilation using jaotc
» But what does ahead of compilation mean for Java?
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Just in time compilation means

Vm Runtime
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Compiling a class to a shared library

Vm Runtime
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Building a standalone executable

Vm Runtime
MyClass

MyOtherClass
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Does either of these really help with Graal?

» Compiling to a library

* Avoids having to JIT the compiler

» Still uses the heap
» Compiling to an a standalone executable

* Doesn’t leave us with a JIT we can use in the JVM
* |s there a useful middle way?
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Compiling to a self contained shared library

ﬁ

MyClass.class
\_

-
MyOtherClass.class
\_

~

java.base.module

U U .

Vm Runtime

Class loader

New Compiler interface

libgraal.so

\_
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Compiling to a self contained shared library
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Third problem

How do we turn a Java library into something we can use?
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Native images

Full AOT compilation to machine code
Works with memory management
Secure execution (e.g., bounds checks)
Embeddable with native applications

dynamically
executed

native
precompiled
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Native image generation

Static Analysis Ahead-of-Time

Compilation

in 9

All Java classes from Reachable methods,
Your application, JDK, fields, and classes
and Substrate VM
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Application running
without dependency on JDK
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Native image lifecycle

Image build time

Static Analysis Ahead-of-Time
Compilation

_ — Machine Code
JDK
T Image Heap
Substrate VM > >
ELF / MachO Binary
All Java classes from Reachable methods, Application running
Your application, JDK, fields, and classes without dependency on JDK
and Substrate VM and without Java class loading
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:Can we builc;l m
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Graal VM on the JVM Architecture
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Graal VM on the JVM Architecture
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Engine integration native and managed
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oracle / graal
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Community Edition (CE)

GraalVM CE is available for free for development
and production use. It is built from the GraalVM
sources available on GitHub. We provide pre-
built binaries for GraalVM CE for Linux on x86

64-bit systems.

DOWNLOAD FROM GITHUB

ORACLE

Enterprise Edition (EE)

GraalVM EE provides additional performance, security,
and scalability relevant for running critical applications
in production. It is free for evaluation uses and
available for download from the Oracle Technology
Network. We provide binaries for GraalVM EE for Linux
or Mac OS X on x86 64-bit systems.

DOWNLOAD FROM OTN
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Practical Partial Evaluation
for High-Performance Dynamic Language Runtimes

Thomas Wiirthinger®  Christian Wimmer®  Christian Humer*  Andreas Wo8*
Lukas Stadler*  Chris Seaton®  Gilles Duboscq® Doug Simon*  Matthias Grimmer'

*Oracle Labs JrInstitute for System Software, Johannes Kepler University Linz, Austria

{thomas.wuerthinger, christian.wimmer, christian.humer, andreas.woess, lukas.stadler, chris.seaton,
gilles.m.duboscq, doug.simon}@oracle.com matthias.grimmer@jku.at
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sbt > clean; compile;
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Performance: Graal VM

Speedup, higher is better
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The Computer Language Benchmarks Game
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Try this out for yourselves

* Try using Graal in OpenJDK

* Add

-XX:+UnlockExperimentalVMOptions
-XX:+UseJVMCICompiler
to your java command line

* Try downloading GraalVM from graalvm.org

» Look under graalvm.org/docs for Getting Started guides and
examples

* Follow @graalvm on Twitter
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