
Compelling Java for
Cloud Workloads

Compelling Java for
Cloud Workloads

Stephen Hellberg

Support Architect, IBM

About me

Long-standing member of IBM support team for:

IBM Java,IBM SDK for ...[Node.js, Apache Spark]

IBM Runtimes

Supporting Java Since Version 1.2.2

Open Source, Security, occasional Speaker!

Stephen Hellberg

Please note

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice and at
IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product direction and it should not be
relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our products remains at our sole
discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput or performance that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve
results similar to those stated here.

3QCon 2019 / March 2019 / © 2019 IBM Corporation

Outline

• This talk is about a JVM but its
also about evolution, new
environments, new economics
and new opportunities

Think 2019 / February 2019 / © 2019 IBM Corporation 5

#1 programming language

Used in 80% of worldwide enterprises

#1 developer platform in the cloud 12 million developers

Over 38 billion active JVMs

Java is ubiquitous

TOBIE 2019 index ranks Java as the most popular
programming language, again.

Java is the language of choice in the Cloud.
Developers are productive in Java.

With millions of skilled Java developers invested in the
platform, the future is bright!

From construction to finance, and retail to communications, Java
powers the world’s economy.

That’s more than four for every person on the planet!
Java is everywhere.

Vendor competition and collaboration
delivered

• The fastest runtime environments

• The most scalable runtime environments

• The best garbage collectors

• The greatest dynamically re-optimizing compilers

The best environment for long running Java only applications

Let’s think about what drives us

Economics
Faster, Cheaper, Better

For many years Java innovation
focused on performance

For a very long
time Java and

the JVM have had
one evolutionary

pressure

Maximize the
opportunities

offered by
Moore’s Law

Forever… h
tt

p
s:

//
co

m
m

o
n

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/
Fi

le
:M

o
o

re
s_

la
w

_
(1

9
7

0
-2

0
1

1
).

P
N

G

Java has tuned itself to this pressure

We built a walled garden and made it the best place
to run enterprise applications of a certain kind

https://www.flickr.com/photos/40139809@N00/

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

Time

Throughput
/ memory
 use

Traditional profile

Time

Memory

Traditional profile

Throughput

But, the world doesn’t stand still!

Even when Moore’s
law broke
• The JVM didn’t have to do much – it

already had a good multi-cpu story.

• But Java needed to change - and we
added streams and lambdas..

• Not as quick to deliver as we’d like

• Just about made it.

• Our Java survived

So far our Java releases have
given us great performance

For long running, multi-core
applications

Exactly what we needed

Exactly what the economics
required.

So far our Java releases have
given us great performance

From the smallest devices to the
largest

As well as real-time and soft-real-time

An ecosystem of JVMs

But things have
changed.

A new race is here

new economics
new environments

All Change!

All Change!

No more free
security updates
from Oracle!

Runtime Language

Type Safe

Bytecode: JIT Compiled

Garbage Collected

Concurrent Threaded

All Platforms

The JVM’s design
characteristics allow us to
imagine taking it to new
places

No other runtime
environment comes close

Java & the JVM is an
enabler for the future

The JVM enables you to move your
application to new environments.

Your model Multiple real applications

JVM

Does ‘Java’
have a
future?

But the fact is that Java’s innovation is
mostly driven by factors outside our control

Aka “Cloud”

Faster, cheaper, easier, better …

Economics still rules
Faster, Cheaper, Better

Cloud economics and new programming models have changed the
game…

Think 2019 / 4711 / Feb 13, 2019 / © 2019 IBM Corporation IBM Confidential

Dynamic compute instances, pay for what you use.…

Gb / hour = $

Think 2019 / 4711 / Feb 13, 2019 / © 2019 IBM Corporation IBM Confidential

Cloud isn’t going away:
 in fact its coming to you

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

What ‘Cloud’ promises

a virtual, dynamic environment
which maximizes use, is infinitely
scalable, always available and needs
minimal upfront investment or
commitment

Take your code – host it on someone
else's machine and pay only for the

resource you use for the time you use
it

AND be able to do that very quickly
and repeatedly in parallel

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019
https://www.flickr.com/photos/vuhung/

“Compute on demand” – it’s what we’ve always wanted

Cloud Economics

We really are getting closer all the time to

‘Compute on Tap’

https://www.flickr.com/photos/leunix/

Demand

time

Demand

time

How does your application respond to demand?

Demand

time

One big server running all the time?

Demand

time

One big server running all the time?Look at all that wasted money!

Demand

Smaller compute units are better

Demand

time

Smaller compute units are better

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

time

One big server running all the time?

Look at all that wasted money!
variable

application
demand

paid for
resource
capacity

Think 2019 / 4711 / Feb 13, 2019 / © 2019 IBM Corporation

Cloud demands:
• Small runtime memory footprint

• Small deployment sizes

• Fast starting applications

• No resource usage when idle

Cloud computing:
 compute == money

Money changes everything

With a measureable and direct relationship
between $£€¥ and CPU/RAM, disk etc the financial
success or failure of a project is even easier to
see

And that means…

Even more focus on value for money.

How does OpenJ9 Help?

Designed for small environments and large.
From megabytes to terabytes

For the widest range of CPUs , architectures and
operating systems.

Eclipse
Open J9

Designed from the start to span all the
operating systems needed by IBM products

This JVM can go from small to large

Can handle constrained environments or
memory rich ones

Is used by the largest enterprises on the
planet

If any JVM can be said to be at the heart of
the enterprise – its this one.

Time

Memory

Standard Profiles look like this

Throughput

Time

Lag Over-Peak usage

But this shape does not work so well for the cloud!

Memory

Throughput

Costs $ Costs
more $

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

compute == money

$ == GB/hr

-Xmx: $100

Time

Lag Over-Peek usage

Doesn’t fit new model

Costs $ Costs
more $

Memory

Throughput

Time

More like this please

Memory

Throughput

Java ME
Inside!

Java ME requirements

Small footprint
–On disk and runtime.
–Very limited RAM, usually more ROM

Fast startup
–Everybody wants their games to start quickly

Quick / immediate rampup
–Your game should not play better the longer you
play

Java Cloud requirements

Small footprint
–Improves density for providers
–Improves cost for applications

Fast startup
–Faster scaling for increased demand

Quick / immediate rampup
–GB/hr is key, if you run for less time you pay less
money

OpenJ9 may
may have its

roots in
small

devices..

But it runs just as well on the
largest

66%
smaller footprint

42%
faster start-up

3x
faster to peak performance
in constrained environments

100%
throughput performance

https://www.eclipse.org/openj9/oj9_performance.html

Key elements

• Designed for scaling from the smallest to the largest

• Comes with several custom garbage collectors (even a soft-real time
one)

• Has a class sharing approach that allows sharing of state and constant
data in

OpenJ9’s Garbage Collection ‘Policies’
 (aka HotSpot’s GC Modes)

Set using -Xgcpolicy:<policy>

gencon – Generational GC (Default)

balanced
- Large 64-bit heaps, logical (like ‘gencon’)/physical separation
- Similar conceptually to HotSpot’s G1 GC

optthruput – Optimised for ‘batch’; most efficient GC
 (in GC terms!)

optavgpause – Optimised for ‘responsiveness’ / interactive
appls.

metronome - For demanding (soft) real-time appls.
 (Reference-counting GC; Designed to deliver hard real-time!)

Plus, concurrent Scavenge (pauseless GC) without the need for
hardware transactional memory support (PPC and mainframe)

 New Pause-less GC vs Traditional GC

Traditional GC Cycle

Pause-Less GC Cycle

QCon 2019 / March 2019 / © 2019 IBM Corporation

X86: Pause-less Garbage Collection
Java Store Inventory and Point of Sale Application

Java GC-tuning made easier

High scavenge pause times made this application a candidate for Pause-less GC

Up to 40% better throughput for response-time constrained Service Level
Agreements (SLAs) at an 8% loss to peak throughput (no SLAs)

Up to 22x better average GC pause-times

(Controlled measurement environment, results may vary)

Enable Pause-less GC with:

• IBM JDK SR5 FP27 or newer on 64-bit X86
• Available on both Windows and Linux

Pause-less GC implemented via software read barriers (no special
hardware support)
JVM option: -Xgc:concurrentScavenge

Pause time

QCon 2019 / March 2019 / © 2019 IBM Corporation

OpenJ9 Shared Classes can work at
all levels

JVM

OS

App server

application application

JVM

App server

application application

application

App server

JVM

application

App server

JVM

OS

Shared Classes cache

-Xshareclasses
-enables the share classes cache

-Xscmx50M
- sets size of the cache

Available for application as well as standard Java class library!

ShareClasses cache

Classfile ROMClass J9RAMClass

ShareClasses cache

Classfile ROMClass J9RAMClass

This isn’t the greatest format for running, compiling
 or even caching

ShareClasses cache

Classfile ROMClass J9RAMClass

So when loading J9 splits it into two
parts

The stateful part
The read only part
Position independent

ShareClasses: ROM pays off

JVM 1 JVM 2 JVM 3
Three JVMs running the same code – on the same machine

ShareClasses: ROM pays off

JVM 1 JVM 2 JVM 3
Three JVMs running the same code – on the same machineAll the ROM classes are shared – position independent, non
stateful

ShareClasses: ROM pays off

JVM 1 JVM 2 JVM 3
Three JVMs running the same code – on the same machine

Shared Classes
 Cache

Giving faster startup, smaller footprint

ShareClasses: ROM pays off

JVM 1 JVM 2 JVM 3
Three JVMs running the same code – on the same machine

Shared Classes
 Cache

Giving faster startup, smaller footprintAnd J9 can share the rom classes across any boundary – VM or
Container

ShareClasses: ROM pays off

JVM 1 JVM 2 JVM 3
Three JVMs running the same code – on the same machine

Shared Classes
 Cache

Giving faster startup, smaller footprintAnd J9 can share the rom classes across any boundary – VM or
Container
Sharing readonly data this way improves startup and footprint
Up to 20% footprint just by enabling shared classes

“Dynamic” AOT through ShareClasses

Shared Classes
 Cache

AOTROM Classes

$ java –Xshareclasses ...

“And J9 can share JITed code too

“Dynamic” AOT through ShareClasses

Shared Classes
 Cache

AOTROM Classes

$ java –Xshareclasses ...

“And J9 can share JITed code too

Giving you 10-30% startup performance

ShareClasses and AOT

Distinction between ‘cold’ and ‘warm’ runs

Dynamic AOT compilation
–Relocatable format
–AOT loads are ~100 times faster than JIT compilations
–More generic code  slightly less optimized

Generate AOT code only during start-up
Recompilation helps bridge the gap

More tuning options

 -Xquickstart
–Designed for the fastest start-up
–Ideal for short-lived tasks
–May limit peak throughput

 -Xtune:virtualized
–Tuning for containers
–Enables VM idle management
–Improves start-up and ramp-up. Trade-off of small
throughput loss

Want to see
 what that all
 means for Java?

Results

Hotspot OpenJ9 OpenJ9 -Xshareclasses -Xquickstart

Startup time

Startup time is ~30% faster with
 OpenJ9 –Xshareclasses -Xquickstart

 Java8 startup time comparison

 OpenJ9 improved application startup time on average by 15% in the past year

System info : Linux Intel X5667 : 2 cores with Hyperthreading enabled (4 logical cpus)

OpenJ9 0.8 OpenJ9 0.12 Hotspot
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SpringBoot application (AcmeAir) running on Tomcat (lower is better)

OpenJ9 0.8 OpenJ9 0.12 Hotspot
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tradelite application running on Liberty (lower is better)

OpenJ9 0.8 OpenJ9 0.12 Hotspot
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Eclipse IDE application
(lower is better)

OpenJ9 0.8 OpenJ9 0.12 Hotspot
0

0.2

0.4

0.6

0.8

1

1.2

Jenkins application running on Liberty (lower is better)

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

Time

Throughput

More like this please

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

Time

Real data

OpenJDK 9
with Hotspot

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

Time

Real data

OpenJDK 9
with Hotspot

OpenJDK 9
with OpenJ9

-Xquickstart -Xshareclasses

© 2015 INTERNATIONAL BUSINESS MACHINES CORPORATION

QCon 2019, London, March 2019

Time

Real data

OpenJDK 9
with Hotspot

OpenJDK 9
with OpenJ9

OpenJDK 9
with OpenJ9
+ AOT

-Xquickstart -Xshareclasses [-Xscmx<...M>]
-Xtune:virtualized

Demand

time

Smaller compute units are better

• WAS 19.0.0.1 Liberty Server startup is much faster than most other
Lightweight App Servers

• 19.0.0.1 is 117% faster to start up than any other lightweight app server

• WAS 19.0.0.1 Liberty Server Memory Footprint is much smaller than
other Lightweight App Servers

Startup and Footprint
 (Jenkins)

WebSphere Liberty
 19.0.0.1

Open Liberty
 19.0.0.1

WebSphere Liberty
 18.0.0.1

Tomcat 9
.0.13

Wild
Fly 1

5.0.1.Final

JBoss
EAP 7.2

Glassfi
sh

 5

0%

100%

200%

300%

400%

500%

600%

700%

1 1
1.41

2.17

6.04 5.89

4.18

Startup Time Comparison of lightweight Servers - Jenkins app
(lower is better)

 P
er

ce
nt

 o
f 1

9.
0.

0.
1

(lo
w

er
 is

 b
et

te
r)

WebSphere
 Liberty

 19.0.0.1

Open Libert
y 19.0.0.1

WebSphere
 Liberty

 18.0.0.1

To
mca

t 9
.0.13

Wild
Fly

 15.0.1.Final

JB
os

s EAP 7.2

Glas
sfi

sh
 5

0%

100%

200%

300%

400%

500%

600%

700%

1 1 0.88

5.51
5.17

6.65

2.99

End Footprint (RSS) Comparison of lightweight Servers - Jenkins app
(lower is better)

 P
er

ce
nt

 o
f 1

9.
0.

0.
1

(lo
w

er
 is

 b
et

te
r)

System Configuration:

SUT: LinTel – SLES 11.4, Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 4 physical cores,
64GB RAM.
Oracle JDK 8 u201 is used for non-IBM app servers & IBM JDK 8 SR5 FP30 is used for
WebSphere Liberty 19.0.0.1, and IBM JDK 8 SR5 FP10 for 18.0.0.1

QCon 2019 / March 2019 / © 2019 IBM Corporation

Don’t just
take my

word for it

 OpenJDK with OpenJ9 Performance Advantages over OpenJDK (Hotspot)

86

Superior Runtime Characteristics Whole Life-Cycle Optimizations

IBM Confidential

Broad Platform Support

Jan 2019

IBM Runtimes for Business includes support for the high performant OpenJ9 Runtime technology

Get a supported
Java runtime for

your desktop
Or just run it for

freeadoptopenjdk.net

https://adoptopenjdk.net/?variant=openjdk8-openj9

 OpenJ9-OpenSSL JCE acceleration on different ciphers

 Open source JCE solution uses OpenSSL native code to accelerate JCE ciphers

 OpenJ9-OpenSSL JCE improves crypto performance significantly on Linux X86

 OpenJ9-OpenSSL currently accelerates AES-GCM, AES-CBC, RSA and SHA-2 family of hash functions

 Primitive (1024 bytes payload) Speedup : OpenJ9-OpenSSL vs OpenJ9

 aes-128-cbc-encrypt 4.5X

 aes-128-gcm-encrypt 15X

 aes-128-cbc-decrypt 15X

 aes-128-gcm-decrypt 13.5X

 sha256 2X

 rsa 3X

CLOUD ECONOMICAL
idle detection

SMART RUNTIME
container aware

FAST START-UP
cached compilation

QUICK DEPLOY
small footprint

DEVOPS FRIENDLY
dynamic debug information

We’re not alone running on a ‘cloud’ infrastructure…

Consuming resources, if not productive, costs us (and others)

https://

-XX:+UseContainerSupport

Need to let the JVM know its not in ‘walled garden’ mode!

Attentive to dynamic number of physical cores
Runtime.availableProcessors() based on cgroup limits

-XX:InitialRAMPercentage / -XX:MaxRAMPercentage

(Instead of -Xms / -Xmx)

 OpenJ9 scales based on container limits

• OpenJ9 is container-aware wrt CPUs as well as memory limits

• JVM tailors resource usage as per constraints imposed by orchestrators, e.g. Kubernetes

• Default parameters for GC and JIT are now tuned if OpenJ9 is running in a container

• OpenJ9 autotunes itself even as Kubernetes dynamically modifies resource constraints

MicroServices & Serverless/FaaS

Don’t use resources unnecessarily

Good citizen

Be prepared!

-XX:+IdleTuningGcOnIdle

-XX:+IdleTuningCompactOnIdle

Designed from the start to span all the
operating systems needed by IBM products

This JVM can go from small to large

Can handle constrained environments or
memory rich ones

Is used by the largest enterprises on the
planet

If any JVM can be said to be at the heart of
the enterprise – its this one.

IBM donated J9 to Eclipse
because we believe it’s the
best way to move Java
forward

• It offers a new place to start

• As the future emerges we can see that Java
needs to handle new technologies, new
hardware.

• Whether GPUs or Neuromorphic Processors or
even ultimate prize of Quantum computers:
Java must adapt.

• We can’t do it on our own. We have to do it
together

http://www.eclipse.org/openj9
https://github.com/eclipse/openj9

Dual License:
Eclipse Public License v2.0

Apache 2.0

Users and contributors very welcome

https://github.com/eclipse/openj9/blob/master/CONTRIBUTING.md

Eclipse OpenJ9
Created Sept 2017

http://www.eclipse.org/omr
https://github.com/eclipse/openj9
https://github.com/eclipse/omr/blob/master/CONTRIBUTING.md

It’s
surprisingly

frugal
It’s surprising

fast

And its available today

adoptopenjdk.net

https://adoptopenjdk.net/?variant=openjdk8-openj9

Fresh Java - how you like it.
Java 8, 9, 10, 11, ..

https://hub.docker.com/r/adoptopenjdk/

https://hub.docker.com/r/adoptopenjdk/

IBM contributed J9 to Eclipse
because modern Java problems
can’t be solved by the few.

We all need to work together to
take Java in new directions

Future

AOT

JVM
JIT

JVM
JIT

JVM
JIT

Ahead of Time and Just in Time Compilation

Shared cache

JIT as a Service

Runtime Services

JIT

AOT: Best available cached compilation
JIT : Best runtime performance

We’re taking the JVM on a new journey – want to come too?

What’s in store
for Java?

GPU’s?

FPGAs?

<your goal here>?

Quantum
Computers?

Thank you

adoptopenjdk.net

https://adoptopenjdk.net/?variant=openjdk8-openj9

https://www.ibm.com/legal/us/en/copytrade.shtml

®

https://www.ibm.com/legal/us/en/copytrade.shtml

