
Jade Alglave – Architecture and Technology
Monica Beckwith – Infrastructure LOB; Advanced Server Team

Applying Concurrency Cookbook 
Recipes to SPEC JBB



2 © 2019 Arm Limited 

About Us

Dr. Jade Alglave

• Memory model architect at Arm

• Co-developer and maintainer of the 
herd+diy toolsuite with Luc Maranget
(INRIA, France)

• Co-developer and maintainer of the 
Linux kernel memory model

Monica Beckwith

Managed runtime performance architect 
at Arm

• Experience with OpenJDK HotSpot JIT, GC

• Experience with JMM and with strong and weakly 
ordered architecture such as x86-64, SPARC, Arm64 
and (very briefly) PPC64



3 © 2019 Arm Limited 

What We Will Cover Today

Introduction to –

Memory Models (Java         Relaxed)

Performance Methodology using Litmus Tests and Tools

Performance Analysis and Measurement using Java Micro-Benchmark Harness (JMH)

Performance Study on Scaling CPU Cores and Simultaneous Multithreading (SMT)



4 © 2019 Arm Limited 

What We Will NOT Cover Today

Details of –

Java         Relaxed memory model

JMH benchmarking

SPEC JBB 2015 benchmarking

CPU cores and simultaneous multithreading (SMT)



5 © 2019 Arm Limited 

Memory Models

- What value can a load read?



6 © 2019 Arm Limited 

Multi-threaded hardware with shared memory 
structure

A multi-threaded, concurrency-aware program

Processor Threads and Software Threads …
The Ideal Concurrent World of Hardware and Software

* This drawing is heavily inspired by “timethreads“ concept in 
Doug Lea’s ‘Concurrent Programming in Java: Design Principles and 
Patterns, Second Edition ‘

Object 2Object 1

Thread 1

LockThread 2 help

Thread1 Threadn

Shared Memory

W R W R

* This drawing is heavily inspired by ‘A Tutorial Introduction to the 
ARM and POWER Relaxed Memory Models’ by Sewell et. al.



7 © 2019 Arm Limited 

Sequentially Consistent Shared Memory
Execution Order == Program Order == Sequential Order

Object 
2

Object 
1

Thread 1

Lock
Thread 2 help

=+

Thread 1 Thread n

Shared Memory

W R W R

Timeline (Program Order)Timeline (Single Global Execution Order)

A Sequentially 
Consistent Machine

• No local reordering

• Writes become visible 
simultaneously to all threads



8 © 2019 Arm Limited 

Sequential Consistency in Practice
Store Buffering Example

Initially, X and Y are 0 in memory; foo and bar are local (register) variables: 
p0                                        p1 

a: X = 1;                    c: Y = 1; 

b: foo = Y;                  d: bar = X; 

What are the permissible values for foo and bar?

On Sequential Consistency, they are the values reachable by interleavings:

{a,b,c,d} {c,d,a,b} {a,c,b,d} 

Therefore we cannot have foo and bar both equal to 0.



9 © 2019 Arm Limited 

The Real Concurrent World of Hardware
Multi Processor Threads/Cores with Tiered Memory Structure

CPUn

CPU0

L1D$
L2

LLC

L1 I$

CPU1
L2

L2

Usually shared 
between all 
cores

Could be multi-threaded 
(SMT)

Usually private

Memory Controller

DDR Banks

L1D$L1 I$

L1D$L1 I$

IO

Can have Load and Store 
buffers

Can have out of order 
execution



10 © 2019 Arm Limited 

Strong Models based on 
Total Store Ordering 
(TSO)

CPUn

CPU0

L1
D$ L2

LLC

L1 
I$

CPU1
L2

L2

Memory Controller

L1
D$

L1 
I$

L1
D$

L1 
I$

IO

Life In The Real World Without Sequential Consistency 
Relaxed vs Strong Memory Model

Strong Memory Models Weaker Memory Models

X86, SPARC POWER, Arm v7

• A thread can see it’s own 
write before other threads

• All other threads see the 
write simultaneously:  
Multiple Copy Atomic Model

• Local reordering is allowed

• All threads are not 
guaranteed to see the write 
simultaneously:  Not Multiple 
Copy Atomic Model



11 © 2019 Arm Limited 

Strong Models based on 
Total Store Ordering 
(TSO)

CPUn

CPU0

L1
D$ L2

LLC

L1 
I$

CPU1
L2

L2

Memory Controller

L1
D$

L1 
I$

L1
D$

L1 
I$

IO

Life In The Real World Without Sequential Consistency 
Relaxed vs Strong Memory Model

Weaker Memory Models

X86, SPARC ARM v8

• A thread can see it’s own 
write before other threads

• All other threads see the 
write simultaneously:  
Multiple Copy Atomic Model

• Local reordering is allowed

• All threads are guaranteed to 
see the write simultaneously:  
Multiple Copy Atomic Model



12 © 2019 Arm Limited 

• Can we reason about our concurrent programs following Sequential Consistency?

• Probably if we had a formal, preferably executable, memory models to ensure that we 
understand the guarantees given by architectures and programming languages.

• Here’s where Jade would come in talking about her cool tools that allow programmers 
to explore the consequences of a given memory model or generate vast families of 
litmus tests to run against hardware.litmus tests

Going Back To Our Store Buffer Example

herd

litmus testcat model

Is this behavior allowed by the cat model? 
Yes/No

litmus
on HW

litmus test

Is this behavior observed on HW? 
Yes/No

litmus test

configuration file (~cat model)

diy

diy.inria.fr

diy.inria.fr


13 © 2019 Arm Limited 

X86 SB
{x=0; y=0;}
P0 | P1 ;
MOV [x],$1 | MOV [y],$1 ;
MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

Hardware architecture and test name

Initial state (x and y are shared memory location)

Thread names

Sequence of instructions displayed as
columns

Question: can we observe this final state of 
given that x=0; y=0?

Store Buffer Litmus Test on a TSO Hardware



14 © 2019 Arm Limited 

Armed With Knowledge

On TSO hardware, can we observe the final state of foo=0 and bar=0; given that
X=0; Y=0?
...
...

Yes! All production architectures allow the outcome where both foo and bar equal 0.

So, what do we do? …

Use mfence as needed.

file:///Applications/Utilities/Terminal.app/
file:///Applications/Utilities/Terminal.app/


15 © 2019 Arm Limited 

Performance 
Methodology 

- Using Litmus Tests and Tools 
To Avoid Barriers Where-ever 
Possible



16 © 2019 Arm Limited 

What & The Why Of Barriers / Fences?

Barriers ensure ordering properties

Barriers enforce strong order

Barriers (when inserted correctly) restore sequential consistency

Barriers can be potentially expensive

Data Memory Barriers on Arm: 

DMB SY (full system)

DMB ST (wait for store to complete)

DMB LD (wait for only loads to complete)



17 © 2019 Arm Limited 

Normal Load-Stores
No Barriers

Litmus test
AArch64 MP

{

0:X1=x; 0:X3=y;

1:X1=y; 1:X3=x;

}

P0          | P1          ;

MOV W0,#1  | LDR W0,[X1] ;

STR W0,[X1] | LDR W2,[X3] ;

MOV W2,#1   |             ;

STR W2,[X3] |             ;

exists

(1:X0=1 /\ 1:X2=0)

Check for any reorder

Check if X0 = 1 and X2 = 0 can exist on P1.



18 © 2019 Arm Limited 

Normal Stores
Load Barrier

Litmus test
AArch64 MP+DMB.LD
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
MOV W0,#1   | LDR W0,[X1] ;
STR W0,[X1] | DMB LD;
MOV W2,#1  | LDR W2,[X3]            ;
STR W2,[X3] |             ;

exists
(1:X0=1 /\ 1:X2=0)

Check for Store reorder



19 © 2019 Arm Limited 

Load & Store Barriers

Litmus test

AArch64 MP+DMB.LD+DMB.ST

{

0:X1=x; 0:X3=y;

1:X1=y; 1:X3=x;

}

P0          | P1          ;

MOV W0,#1   | LDR W0,[X1] ;

STR W0,[X1] | DMB LD;

DMB ST | LDR W2, [X3]; 

MOV W2,#1  | ;

STR W2,[X3] |            ;

exists

(1:X0=1 /\ 1:X2=0)

Generated assembler
#START _litmus_P1
ldr w4,[x1]
dmb ld
ldr w5,[x2]
#START _litmus_P0
mov w7,#1
str w7,[x0]
dmb st
mov w6,#1
str w6,[x2]

Test MP+DMB.ST+DMB.LD Allowed
Histogram (3 states)
499999:>1:X0=0; 1:X2=0;
20 :>1:X0=0; 1:X2=1;
499981:>1:X0=1; 1:X2=1;

No

Witnesses
Positive: 0, Negative: 1000000
Condition exists (1:X0=1 /\ 1:X2=0) is NOT validated
Hash=4d15dccdb1da0ce51fac17dea068d047

Observation MP+DMB.ST+DMB.LD Never 0 1000000



20 © 2019 Arm Limited 

But Aren’t Barriers Expensive?

Acquire – Release (implicit barrier) semantic – One way barriers

LDAR - All loads and stores that are after an LDAR in program order, … must be observed 
after the LDAR

STLR - All loads and stores preceding an STLR …, must be observed before the STLR

Thinking about lock-free?



21 © 2019 Arm Limited 

Performance Analysis and 
Measurement

- Using Java Micro-
Benchmarking Harness (JMH)



22 © 2019 Arm Limited 

JMM Rule 1 for Volatile 
Stores

Order 1 Normal/Volatile Load
Normal/Volatile Store

Can’t 
Reorder

Order 2 Volatile Store
Any load/store 
(normal or volatile) 
followed by a ‘volatile 
store’ can’t be 
reordered.



23 © 2019 Arm Limited 

Volatile Stores - Barriers With DMBs
JMM rule: Any load/store followed by Volatile Store can’t be re-ordered

Litmus test
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
MOV W0,#1   | LDR W0,[X1] ;
STR W0,[X1] | DMB LD ;
LDR W2,[X1] | LDR W2,[X3]            ;
DMB SY      |             ;
STR W2,[X3] |             ;

exists
(1:X0=1 /\ 1:X2=0)

Results
Test MP Allowed
States 3
1:X0=0; 1:X2=0;
1:X0=0; 1:X2=1;
1:X0=1; 1:X2=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:X0=1 /\ 1:X2=0)
Observation MP Never 0 3



24 © 2019 Arm Limited 

Volatile Stores - Can Barriers Be Replaced By STLR?
JMM rule: Any load/store followed by Volatile Store can’t be re-ordered

Litmus test
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
MOV W0,#1   | LDR W0,[X1] ;
STR W0,[X1] | DMB LD ;
MOV W2,#1 | LDR W2,[X3]            ;

STLR W2,[X3] |             ;
exists
(1:X0=1 /\ 1:X2=0)

Results
Test MP Allowed
States 3
1:X0=0; 1:X2=0;
1:X0=0; 1:X2=1;
1:X0=1; 1:X2=1;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (1:X0=1 /\ 1:X2=0)
Observation MP Never 0 3



25 © 2019 Arm Limited 

JMM Rule 2 for Volatile 
Stores

• A ‘volatile store’ followed by any 
normal load/store CAN be 
reordered.

• A ‘volatile store’ followed by any 
volatile load/store CANNOT be 
reordered.

Order 1

Can Reorder

Volatile Store
Can’t 

Reorder
Order 2 Normal Load

Normal Store
Volatile Load
Volatile Store



26 © 2019 Arm Limited 

Volatile Stores – Can Barriers Be Replaced By STLR?
STLR doesn’t guarantee that a subsequent volatile load/store will not be reordered

static class 
TestNormalLoadPostVolatileStores {

volatile int intField1;
int intNorm1;

public 
TestNormalLoadPostVolatileStores() {

intField1 = 32;
intNorm1 = intField1;

}
}

JMH Test Code
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
LDR W0,[X1] | LDR W0,[X1] ;
MOV W2,#1   | MOV W2,#1   ;
STLR W2,[X3] | STR W2,[X3] ;

exists
(0:X0=1 /\ 1:X0=1)

Litmus Test Positive Event Structure



27 © 2019 Arm Limited 

Volatile Stores – Can Barriers Be Replaced By STLR?
Success! STLR + LDAR of volatiles provide that guarantee

Litmus test
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
LDR W0,[X1] | LDAR W0,[X1] ;
MOV W2,#1   | MOV W2,#1   ;
STLR W2,[X3] | STR W2,[X3] ;

exists
(0:X0=1 /\ 1:X0=1)

Results
Test LB Allowed
States 3
0:X0=0; 1:X0=0;
0:X0=0; 1:X0=1;
0:X0=1; 1:X0=0;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:X0=1 /\ 1:X0=1)
Observation LB Never 0 3



28 © 2019 Arm Limited 

Volatile Stores – JMH Profiles
Success! STLR + LDAR of volatiles provide that guarantee

Load Acquire – Store Release Pair

stlr w11, [x10] ;*putfield intField1 ;  

add x10, x2, #0xc

ldar w11, [x10] ;*getfield intField1

Data Memory Barrier (inner share-ability domain

str w10, [x2,#12]

dmb ish ;*putfield intField1 

ldr w11, [x2,#12]

dmb ishld ;*getfield intField1

36% faster on max SMT count!!



29 © 2019 Arm Limited 

JMM Rule 1 for Volatile 
Loads

Order 1 Volatile Load
Can’t 

Reorder
Order 2 Normal/Volatile Load

Normal/Volatile Store
A ‘volatile load’ followed by any 
load/store (normal or volatile) can’t be 
reordered.



30 © 2019 Arm Limited 

Volatile Load - Barriers With DMBs
JMM rule: A Volatile Load followed by any load/store can’t be re-ordered

Litmus test
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
LDR W0,[X1] | LDR W0,[X1] ;
DMB SY | MOV W2,#1   ;
MOV W2,#1            | DMB SY ;
STR W2,[X3] | STR W2,[X3] ;

exists
(0:X0=1 /\ 1:X0=1)

Results
Test LB Allowed
States 3
0:X0=0; 1:X0=0;
0:X0=0; 1:X0=1;
0:X0=1; 1:X0=0;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:X0=1 /\ 1:X0=1)
Observation LB Never 0 3



31 © 2019 Arm Limited 

Volatile Stores – Can Barriers Be Replaced By LDAR?
Success! LDAR provides the right guarantee

Litmus test
{
0:X1=x; 0:X3=y;
1:X1=y; 1:X3=x;
}
P0          | P1          ;
LDAR W0,[X1] | LDR W0,[X1] ;

| MOV W2,#1   ;
MOV W2,#1            | DMB SY ;
STR W2,[X3] | STR W2,[X3] ;

exists
(0:X0=1 /\ 1:X0=1)

Results
Test LB Allowed
States 3
0:X0=0; 1:X0=0;
0:X0=0; 1:X0=1;
0:X0=1; 1:X0=0;
No
Witnesses
Positive: 0 Negative: 3
Condition exists (0:X0=1 /\ 1:X0=1)
Observation LB Never 0 3



32 © 2019 Arm Limited 

Performance Study

- Scaling CPU Cores / 
Simultaneous Multithreading 
(SMT) 



33 © 2019 Arm Limited 

0.9

0.95

1

1.05

1.1

1 4 Max

lse wolse wdmb

Applying Cook Book Recipes to SPECJBB
Bigger is Better

Core or 
Thread 
Count

With LSE; 
With LDAR
(baseline)

Without 
LSE; 

With LDAR

With LSE;
With DMB

1 1.00 0.97 0.92
4 1.00 1.00 0.95

Max 1.00 1.01 1.00

•Fences/Barriers(e.g. DMB ST, DMB LD, DMB SY)
•Atomics/LSE  (e.g. LDREX/STREX or CAS)



34 © 2019 Arm Limited 

Single Core Performance
The Quest and Guarantee of Sequential Consistency

Hardware improvements measured on Java micro-benchmarks (OpenJDK JDK11):
• Object/memory allocations up to 2.4x faster

• Object/array initializations up to 5x faster
– Smart issuing and cost reduction of 

SW barriers (i.e. DMB) required 
by Arm’s relaxed memory model

• Copy chars up to 1.6x faster

• New atomic instructions improve locking 
throughput and contention latency by up to 2x

Cortex-A72 Code Neoverse N1
0.21% dmb ishst ;*new (0 cycles) 0.00%
7.73%  (~3.5 cycles) ldr x11, [sp,#8]
1.75% ldr w17, [x11,#12];*getfield 0.06%

mov x2, x0
0.51% ldp w0, w18,[x11,#16];*getfield 0.11%
0.42% ldp w3, w1, [x11,#24];*getfield

org.openjdk.bench.vm.compiler.generated.StoreAfterStore_testAllocAndZeroStore_jmhTest::testAllocAndZeroStore_avgt_jmhStub



35 © 2019 Arm Limited 

Ares Single Core Performance 

Hardware improvements measured on SPECJBB (OpenJDK JDK11):
• Neoverse N1 CPU improves performance from Cortex-A72 by 1.7x

Software improvements measured on SPECJBB: 
• JDK11 improves performance vs JDK8 on Arm by up to 14%



36 © 2019 Arm Limited 

Resources

http://g.oswego.edu/dl/jmm/cookbook.html 
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

http://hg.openjdk.java.net/code-tools/jmh-jdk-
microbenchmarks/file/92c55597888e/README.md

http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_an
d_Cookbook_A08.pdf

https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://hg.openjdk.java.net/code-tools/jmh-jdk-microbenchmarks/file/92c55597888e/README.md
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf


37 © 2019 Arm Limited 

Appendix



38 © 2019 Arm Limited 

The herd+diy Toolsuite

The tool suite supports and provides a formal consistency model for all of the following:

- Arm, IBM Power, Intel x86

- Nvidia GPUs

- C/C++

- Linux C

This means that a user can experiment with the concurrency implemented at all these levels and 
generate systematic families of tests to probe implementations.

diy.inria.fr

diy.inria.fr


39 © 2019 Arm Limited 

A Store Barrier Litmus Test

PodWW Rfe PodRR Fre

Fre PodWR Fre PodWR

A litmus test source has three main sections:

The initial state defines the initial values of registers and memory locations. Initialisation
to zero may be omitted.

The code section defines the code to be run concurrently — above there are two threads. 
Yes we know, our X86 assembler syntax is a mistake.

The final condition applies to the final values of registers and memory locations.

Demo - Terminal



40 © 2019 Arm Limited 

Executing the model: herd

herd

litmus testcat model

Is this behavior allowed by the cat model? 

Yes/No

The herd tool allows a user to execute a formal model, written in the cat language.

Given a litmus test and a cat model, herd runs the litmus test against the cat model:

herd tries to determine whether the model allows the final state given in the test can be reached.



41 © 2019 Arm Limited 

Running tests on hardware: litmus

litmus
on HW

litmus test

Is this behavior observed on HW? 
Yes/No

The litmus tool allows a user to run a litmus test against hardware.
The tool gathers all the final states that were observed on hardware during multiple runs of the test.
We can then compare the output of herd and litmus, to check whether they are in accord.



42 © 2019 Arm Limited 

Generating tests: diy

litmus test

configuration file (~cat model)

diy

The diy tool allows a user to generate interesting families of litmus tests.
It takes as input a configuration file, where a user should list the features of interest to them.
We can use families of diy-generated tests to run validation campaigns, 
comparing the cat model and prototypes.



The Cloud to Edge Infrastructure Foundation
for a World of 1T Intelligent Devices

Thank You!


