
How SeatGeek
Successfully Handle High
Demand Ticket On-Sales

Vitor Pellegrino
Director of Engineering

Anderson Parra
Senior Software Engineer

@anderparra

/anderparra

Anderson Parra
Senior Software Engineer

@pellegrino

/vitorpellegrino

Vitor Pellegrino
Director of Engineering

What’s SeatGeek?
With our combination of technological
prowess, user-first attitude and dashing good
looks, we, SeatGeek, are simplifying and
modernizing the ticketing industry.

By simultaneously catering to both the
consumer and enterprise markets, we’re
powering a new, open entertainment industry
where fans have effortless access to
experiences, and teams, venues and shows
have seamless access to their audiences. We
think it’s time that everyone can expect more
from ticketing.

SeatGeek

Vision Statement
Become the largest and most
loved ticket marketplace by
offering consumers a
meaningfully better ticketing
experience.

The Ticketing
Problem

Who is the customer anyway?

Who is our customer anyway?

https://www.forbes.com/sites/shlomosprung/2021/04/21/cleveland-cavaliers-seatgeek-bring-mobile-contactless-food-ordering-to-rocket-mortgage-fieldhouse

Different interfaces

https://www.forbes.com/sites/shlomosprung/2021/04/21/cleveland-cavaliers-seatgeek-bring-mobile-contactless-food-ordering-to-rocket-mortgage-fieldhouse

Ticketing Problem

Normal operations

Normal operations

vs

On-sales

Normal operations vs on-sales

Normal operations vs on-sales

Autoscale is
not enough

Normal operations vs on-sales

Tradeoffs
might change

Normal operations vs on-sales

Tradeoffs
might change

Latency

Normal operations vs on-sales

Tradeoffs
might change

Latency

Redundancy

Normal operations vs on-sales

Tradeoffs
might change

Latency

Redundancy

Security/Anti-fraud
Systems

Normal operations vs on-sales

You need to design each mode of
operation differently.

aka Vroom, SeatGeek in-house
queueing system

Virtual
Waiting Room

Let’s see an example:
I would like to buy
tickets for an
event with high
demand…

Blockade - Waiting
Room Mode

Throttle - Queue
Mode

Why Do We Need a Queuing System?

Fairness
Offers to users a fair way for
purchasing (access
protected resources). The
fairest approach for online
ticketing applications is
First-In, First-Out.

Operation
Control the amount of users
accessing the available
tickets. The key idea is
maximize the number of sales
using reserve–and-purchase
strategy.

Avoid Disruptions
Minimize the risk of
disruptions due to high
traffic. The mechanism helps
our systems to smoothly
scale-up when there is
unexpected high traffic.

Virtual Waiting Room Mission

Absorbs a high traffic
and then pipes it to
a constant traffic in

our infrastructure.

Considerations when building a
queuing system

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

Considerations when building a
queuing system

Stateful
When people must have a numbered
position in the queue, we need to
manage the state of the queue using
backend service

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

Considerations when building a
queuing system

Stateful
When people must have a numbered
position in the queue, we need to
manage the state of the queue using
backend service

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

Random Selection
Based on maximum threshold for the
number of concurrent visitors
allowed, random users are selected
to get in the protected zone

Considerations when building a
queuing system

Stateful
When people must have a numbered
position in the queue, we need to
manage the state of the queue using
backend service

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

First-In First-Out
Linear model that lines up and
admits users based on the order in
which their requests were received.
It is the fairest model

Random Selection
Based on maximum threshold for the
number of concurrent visitors
allowed, random users are selected
to get in the protected zone

Considerations when building a
queuing system

Stateful
When people must have a numbered
position in the queue, we need to
manage the state of the queue using
backend service

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

First-In First-Out
Linear model that lines up and
admits users based on the order in
which their requests were received.
It is the fairest model

Random Selection
Based on maximum threshold for the
number of concurrent visitors
allowed, random users are selected
to get in the protected zone

Queue Management
Operators manage the queue during
on sales, data like exit rate and
pause/release the queue draining
are constantly updated

Considerations when building a
queuing system

Stateful
When people must have a numbered
position in the queue, we need to
manage the state of the queue using
backend service

Stateless
A stateless version of waiting room is
a known pattern for CDN providers. It
is similar to rate limiting, there is no
ordering guarantees

First-In First-Out
Linear model that lines up and
admits users based on the order in
which their requests were received.
It is the fairest model

Random Selection
Based on maximum threshold for the
number of concurrent visitors
allowed, random users are selected
to get in the protected zone

Queue Management
Operators manage the queue during
on sales, data like exit rate and
pause/release the queue draining
are constantly updated

Metrics
What is the size of audience waiting
for on sale start? How long an user
has waited in the queue? We
measure everything.

Considerations when building a
queuing system

Stateless
or
Stateful?

Stateless
or
Stateful?

const originHitRate = 0.3
if (Math.random() <= originHitRate) {
 console.log("A lucky user goes to the origin")
 return true
}

Hybrid Model: Stateless and Stateful Combined

● Due the First-In First-Out requirement, we manage the queue state in the
backend (AWS Lambda and DynamoDB).

● Validation and Routing logic run in the Edge (Fastly CDN). It minimizes the
request round trip, reduces latency and costs.

Because of this hybrid approach, we need to synchronize the
state between those two models.

We chose both, the red and the blue pills

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

Dictionary

Primary Datastore
source of truth

Edge Datastore
L1 Cache

key-value store

Virtual Waiting Room Tech Stack

Frontend CDN Backend Storage Observability

Fastly
VCL

Fastly Edge
Dictionaries

Virtual Waiting Room Stack Overview

How
Does
it
Work?

Virtual Waiting Room Operation Modes

Protected Zone: red-sox-at-yankees

What is a Protected Zone?

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

Protected Zone: red-sox-at-yankees

What is a Protected Zone?

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

 // swagger:enum ProtectedZoneState
 type State string

 const (
 StateDraft State = "draft"
 StateBlockade State = "blockade"
 StateThrottle State = "throttle"
 StateDone State = "done"
)

 // swagger:model ProtectedZone
 type ProtectedZone struct {
 UUID string `json:"uuid"`
 Name string `json:"name"`
 Resources []Resource `json:"resources"`
 EventDetails *EventDetails `json:"event_details,omitempty"`
 State State `json:"state"`
 Limits Limits `json:"limits"`
 Timeline *Timeline `json:"timeline,omitempty"`
 }

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

Protected Zone: red-sox-at-yankees

What is a Protected Zone?

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

Only requests with
Access Tokens are
routed to Protected

Zones

https://seatgeek.com/red-sox-at-yankees-tickets/4-9-2022-bronx-new-york-yankee-stadium/mlb/r/5465018

The Virtual Waiting Room Main States

Transitions from Blockade to Throttle State.

All traffic to the protected zone is
blocked, showing a waiting room
page to end-users.

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

polling mode: every
15 seconds

When the Protected
Zone is transitioned

to Blockade, all
traffic is blocked,
there is no queue

formed

Dictionarywaiting room
page

Transitions from Blockade to Throttle State.

Allows a configurable
number of end-users

per minute into the
protected zone. After

initial seeding, users are
allowed in First-In, First-

Out (FIFO).

The Virtual Waiting Room Main States

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page
visitor
token

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page

visitor

token

visitor
token

w
ebsocket visitor

token

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page
visitor
token

w
ebsocket

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page
visitor
token

w
ebsocket

Visitor Token is exchanged to Access Token

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page

visitor

token

visitor
token

w
ebsocket

access
token

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

GREEEN!!!
On sale kick off,
the race to get a
position in the
queue starts

Dictionaryqueue page

w
ebsocket

access
token the Visitor Token

is replaced by the
Access Token

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

Dictionary

access
token

With an Access
Token, User gets in
the Protected Zone

API
gateway

Dynamo
DB

Lambda register
function

Lambda notifier
function

backoffice

vroom
automation

AWS Nomad

Dynamo
Stream

Lambda
exchanger

function

Dictionary

the event
page

There is no
call to our

vroom
backend
service

Leaky Bucket Implementation
● Does not show the queue page when bucket is empty (low traffic).
● Does not discard requests, when bucket is full (high traffic), overflow

requests are routed to the queue.

 func handleRequest(ctx context.Context, req events.APIGatewayProxyRequest)
 (events.APIGatewayProxyResponse, error) {
 visitorToken, uuid := getVisitorTokenAndUUID(&req)
 token, pz := record(ctx, visitorToken, uuid)

 responseHeaders := map[string]string{
 // tell Fastly to not cache as this is for a single user
 "Cache-Control": "private, max-age: 0",
 }

 if err := tryExchangeVisitorToken(ctx, &token); err != nil {
 // errors for one user does not affect the bouncer capacity
 if errors.Is(err, e.ErrDynamodbStore) {
 return events.APIGatewayProxyResponse{StatusCode:
 http.StatusInternalServerError, Headers: responseHeaders}, nil
 }

 // by default it returns 429 and Fastly caches it
 return events.APIGatewayProxyResponse{
 StatusCode: http.StatusTooManyRequests,
 Headers: map[string]string{
 // same as max-age but applies specifically to proxy caches (Fastly)
 "Cache-Control": fmt.Sprintf("max-age=%d, stale-if-error=60",
 60-time.Now().Second()),
 },
 }, nil
 }

 responseHeaders["X-Access-Token"] = token.AccessToken

 return events.APIGatewayProxyResponse{StatusCode: http.StatusOK,
 Headers: responseHeaders}, nil
 }

 if (req.http.X-Bouncer == "true") {
 # unset things we do not want to save with the cached object
 unset beresp.http.Set-Cookie;

 if (beresp.status == 429) {
 # cache the beresp if it is 429 response code with
 # proper Cache-Control
 set beresp.cacheable = true;
 } else {
 # turn off caching for everything else
 set beresp.cacheable = false;
 }

 return(deliver);
 }

Why Are We Using AWS Lambda?

Premisse: Virtual Waiting Room should
run aside of Product Environment. It
provides isolation and avoids cascade
effect in case of failures.
● Lambda simplifies the

infrastructure management.
● Great support for concurrent

executions.
● Save costs by paying only for the

compute time you use.

Why Are We Using DynamoDB?

It is an ordered flow of information about
changes to items in a DynamoDB table. When
you enable a stream on a table, DynamoDB
captures information about every modification
to data items in the table.

DynamoDB Streams

DynamoDB allows you to define a per-item timestamp to
determine when an item is no longer needed. DynamoDB
deletes the item from your table without consuming any
write throughput (WCU).

Time to Live (TTL) Attribute

DynamoDB Partition

Each partition in DynamoDB supports:
● 3k Read Capacity Unit (RCU) per second
● 1K Write Capacity Unit (WCU) per second

DynamoDB throttles if a single partition receives more requests than
supported.

DynamoDB Partition - Sharding

Multiples the capacity by total of shards.
Let’s suppose 10 shards, it will scale up:
● From 3k RCU to 30K RCU
● From 1K WCU to 10K WCU

 const protectedZoneShards = 10
 func (t *Token) Shard() string {
 hash := fnv.New32a()
 _, _ = hash.Write([]byte(t.VisitorToken))
 return fmt.Sprintf(
 "%s-%d",
 t.ProtectedZoneUUID,
 hash.Sum32()%protectedZoneShards,
)
 }

Sync Challenge: DynamoDB <-> Fastly Dictionary

How to reliably/atomically update DynamoDB and Fastly Dictionary?

2 Phase Commit is not an option. We apply Transactional Outbox Pattern. It means
that DynamoDB is the source of truth and any change (insert/update) into protected
zone table is streamed using Dynamo Stream. It creates a separate Message Relay
process that publishes the data inserted/updated into DynamoDB to Fastly Dictionary.

 table blocklist {
 "/event-1": "event_details=???&state=blockade&uuid=20b5e1cc...",
 "/event-2": "event_details=???&state=throttle&uuid=8772fde5...",
 }

 sub vroom_resource_metadata {
 # Do nothing if we already have the header populated
 if (std.strlen(req.http.X-Metadata) > 0) {
 return;
 }

 declare local var.metadata STRING;
 set var.metadata = table.lookup(blocklist, req.url.path);

 if (std.strlen(var.pz_metadata) > 0) {
 set req.http.X-Metadata = "/?" + urldecode(var.metadata);
 return;
 }
 }

 sub vroom_routing {
 declare local var.state STRING;
 set var.state = querystring.get(req.http.X-Metadata, "state");
 # Validation route logic ...
 }

https://docs.fastly.com/en/guides/about-edge-dictionaries

https://docs.fastly.com/en/guides/about-edge-dictionaries

 table blocklist {
 "/event-1": "event_details=???&state=blockade&uuid=20b5e1cc...",
 "/event-2": "event_details=???&state=throttle&uuid=8772fde5...",
 }

 #[derive(Serialize, Deserialize, Debug)]
 struct Metadata {
 uuid: Option<String>,
 event_details: Option<String>,
 state: Option<String>,
 }

 fn vroom_resource_metadata(req: &Request) -> Option<Metadata> {
 let blocklist = Dictionary::open("blocklist");
 match blocklist.get(req.url.path) {
 Some(text) => Some(serde_json::from_str(text)?),
 _ => None,
 }
 }

 fn vroom_routing(req: &Request) -> Result<Response> {
 let metadata = match vroom_resource_metadata(req) {
 Some(metadata) => metadata,
 _ => return req_without_protection(req),
 };
 // validation route logic ...
 }

https://developer.fastly.com/solutions/examples/rust/

https://developer.fastly.com/solutions/examples/rust/

Would Like to Know More Details?

https://aws.amazon.com/blogs/architecture/build-a-virtual-waiting-room-with-amazon-dynamodb-and-aws-lambda-at-seatgeek/

https://aws.amazon.com/blogs/architecture/build-a-virtual-waiting-room-with-amazon-dynamodb-and-aws-lambda-at-seatgeek/

 Virtual
 Waiting Room
 Observability

Metrics and Alerting
● Metrics on Datadog

○ Business metrics such as time in the
queue, queue length, blockade zones.

○ System metrics such as Fastly latency,
DynamoDB latency, p95 execution
time of lambda functions, etc.

● Metrics on AWS Timestream
(Long Term Storage)

○ Available to understanding the past on
sales e predict the behaviour of next
ones.

● Queue Sensors
○ Stakeholders notification - via Slack -

regardless queue formed

What is Next?

Next Steps for our pipeline
Automation: we are investing to reduce human interference operating
our systems. Our vision is to run large on sales operated only by robots.
It means, promoters design the on sale timeline and then everything else
is controlled by robots. It is connected to:

● Dynamic exit rate based on traffic
● Dynamic on-call alerting severity based on critical window
● Continuous Improvement for Fraud Detection

Next Steps for our operations
Operations: We want our services to understand whether they are in
"on-sale" or normal operations mode. This will inform:

● Incident response
● On-sale aware telemetry
● Service configuration
● SLOs for on-sale vs normal operations

Summary

Elasticity at all layers of your
infrastructure
Virtual Waiting Rooms, or online queuing systems, are a good, simple
way to control traffic surges on web applications. But they aren’t a
replacement for properly scaling your infrastructure.

Leverage the toolkit you have at
your disposal

DynamoDB and Lambda were a great match for us. It pays off to
understand what is already built into them.

Advantages of Data Storage @ Edge
Store data at Edge (CDN) is a recent topic. There are some limitations
regarding it, mainly for data manipulation and capacity. However when
you have a case that fits well on it, take it!

● Content sharing and social media outlets updating large referer block lists
● Customers authenticating valid user keys at the Edge
● Publishers redirecting users to a specific country site based on geo-location
● Advertising technology companies getting the identity of users at the Edge

The End

Thank You!

Thanks to everyone for your patience and time.
Hope everyone has a better understanding how
SeatGeek handles high traffic during event on
sales.

Questions?

If you want to know more about any of this,
please reach out to one of us:

● Anderson Parra

● Vitor Pellegrino

@anderparra

/anderparra

@pellegrino

/vitorpellegrino

