
Powering Flexible Payments in the Cloud with 
Kubernetes





whoami

3

Ana Calin

Systems Engineer @Paybase

Twitter: @AnaMariaCalin



Table of Contents

01   whoami

02  About Paybase

03  Things we’ve achieved so far

04   Our tech stack

05  Anatomy of a compromise

06  A few notes on security and resilience

07  Challenges we’ve encountered

08  Challenges we’ve circumvented

09  Summary

4



> API driven Payments Provider Platform

> B2B - marketplace, gig/sharing economies, cryptocurrency

> We make regulation easier for our customers



Things we’ve achieved so far

✓ We are ~ 2 years old

✓ Built our own processing platform from scratch 

✓ We are currently onboarding our first 7 clients 

✓ FCA authorised

✓ We have an EMI license

✓ Innovate UK grant worth £700k

✓ PCI DSS (The Payment Card Industry Data Security Standard) Level 1 

compliant 
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Some of our tech stack
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Anatomy of a compromise
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Details about the compromise

✓ in the scope of an internal infrastructure penetration test

✓ in our production cluster

✓ pen tester had access to a privileged container

9



The weak link : 
GKE

● Compute engine scope 
● Compute engine 

default service 
account

● Legacy metadata 
endpoints
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Metadata endpoints
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Mitigations

12

OR



Result
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The weak link : 
Tiller

● comes with mTLS 
disabled 

● is able to create any 
K8S API resource in a 
cluster

● performs no 
authentication by 
default
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Tiller 
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Mitigations
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Security and resilience
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A secure K8S cluster should
● use a dedicated SA with minimal permissions
● use minimal scopes - least privilege principle
● use Network Policies or Istio with authorization rules set up
● use Pod Security Policies
● use scanned images
● have RBAC enabled
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A resilient Kubernetes cluster should
● be architected with failure and elasticity  in mind by default
● have a stable observability stack
● be tested with a tool such as Chaos Engineering
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Challenges we’ve 
encountered on our road to 

compliance
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Challenge 1: The What

As a PCI compliant PSP with many types of dbs, I am 
want to be able to query data-sets in a secure and db 
agnostic manner so that engineers and customers can use 
it easily and we are not prone to injections.(req. 
6.5.1)
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Meet PQL

01   Inspired by SQL
02  Injection resistant
03  Used for querying data-sets
04  Database agnostic
05  Adheres to logical operator precedence

Challenge 1: The How 
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01   Lexical analysis (tokenize input)
02  Syntactical analysis (parse tokenized input to AST)

03  Abstract Syntax Tree to specific database query

Challenge 1: The How
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Challenge 2: The What

As a PCI compliant PSP, I am required to implement only 
one primary function per server to prevent functions 
that require different security levels from coexisting 
on the same server.(req. 2.2.1)
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01   Server = Deployable Unit
02  Network Policies
03  Pod Security Policies
04  Only using trusted and approved images

Challenge 2: The How 
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Challenges we’ve 
circumvented on our road to 

compliance
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Challenge 3: The What

As a PCI compliant PSP, I am required to remove all  
test data and accounts from system components before 
the system becomes active/goes into production 
(req.6.4.4)
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01  Security

02 Separation of concerns

03 Reduction of PCI DSS scope

04 Easier to organize RBAC

Challenge 3: Benefit
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Challenge 3: The What

As a PCI compliant PSP, I am required to remove all  
test data and accounts from system components before 
the system becomes active/goes into production 
(req.6.4.4)
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Challenge 4: The What

As a PCI compliant PSP, I am required to perform 
quarterly internal vulnerability scans,address 
vulnerabilities and perform rescans to verify all “high 
risk” vulnerabilities are resolved in accordance with 
the entity’s vulnerability ranking.(req.11.2.1)
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Challenge 4: The 
How 

Image scanning
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Here’s a diagram
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Summary

● security is not a point in time but an ongoing journey

● you can use OSS and achieve a good level of security  

● we need to challenge the PCI DSS status quo
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Resources

✓ https://www.4armed.com/blog/hacking-kubelet-on-gke/

✓ https://www.4armed.com/blog/kubeletmein-kubelet-hacking-too

l/

✓ https://itnext.io/how-a-naughty-docker-image-on-aks-could-giv

e-an-attacker-access-to-your-azure-subscription-6d05b92bf811
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