
Powering Flexible Payments in the Cloud with
Kubernetes

whoami

3

Ana Calin

Systems Engineer @Paybase

Twitter: @AnaMariaCalin

Table of Contents

01 whoami

02 About Paybase

03 Things we’ve achieved so far

04 Our tech stack

05 Anatomy of a compromise

06 A few notes on security and resilience

07 Challenges we’ve encountered

08 Challenges we’ve circumvented

09 Summary

4

> API driven Payments Provider Platform

> B2B - marketplace, gig/sharing economies, cryptocurrency

> We make regulation easier for our customers

Things we’ve achieved so far

✓ We are ~ 2 years old

✓ Built our own processing platform from scratch

✓ We are currently onboarding our first 7 clients

✓ FCA authorised

✓ We have an EMI license

✓ Innovate UK grant worth £700k

✓ PCI DSS (The Payment Card Industry Data Security Standard) Level 1

compliant

6

Some of our tech stack

7

Anatomy of a compromise

8

Details about the compromise

✓ in the scope of an internal infrastructure penetration test

✓ in our production cluster

✓ pen tester had access to a privileged container

9

The weak link :
GKE

● Compute engine scope
● Compute engine

default service
account

● Legacy metadata
endpoints

10

Metadata endpoints

11

Mitigations

12

OR

Result

13

The weak link :
Tiller

● comes with mTLS
disabled

● is able to create any
K8S API resource in a
cluster

● performs no
authentication by
default

14

Tiller

15

Mitigations

16

RESULTS IN

Security and resilience

17

A secure K8S cluster should
● use a dedicated SA with minimal permissions
● use minimal scopes - least privilege principle
● use Network Policies or Istio with authorization rules set up
● use Pod Security Policies
● use scanned images
● have RBAC enabled

18

A resilient Kubernetes cluster should
● be architected with failure and elasticity in mind by default
● have a stable observability stack
● be tested with a tool such as Chaos Engineering

19

Challenges we’ve
encountered on our road to

compliance

20

Challenge 1: The What

As a PCI compliant PSP with many types of dbs, I am
want to be able to query data-sets in a secure and db
agnostic manner so that engineers and customers can use
it easily and we are not prone to injections.(req.
6.5.1)

21

Meet PQL

01 Inspired by SQL
02 Injection resistant
03 Used for querying data-sets
04 Database agnostic
05 Adheres to logical operator precedence

Challenge 1: The How

22

01 Lexical analysis (tokenize input)
02 Syntactical analysis (parse tokenized input to AST)

03 Abstract Syntax Tree to specific database query

Challenge 1: The How

23

Challenge 2: The What

As a PCI compliant PSP, I am required to implement only
one primary function per server to prevent functions
that require different security levels from coexisting
on the same server.(req. 2.2.1)

24

01 Server = Deployable Unit
02 Network Policies
03 Pod Security Policies
04 Only using trusted and approved images

Challenge 2: The How

25

Challenges we’ve
circumvented on our road to

compliance

26

Challenge 3: The What

As a PCI compliant PSP, I am required to remove all
test data and accounts from system components before
the system becomes active/goes into production
(req.6.4.4)

27

28

VPC A

PAYBASE PJT

GCR - IMAGE
REPO

GCS - TF
STATE

CDE

PAYBASE GCP ORGANIZATION

PROD
NS QA NS

Common way of splitting environments

GKE

STAGING
NS

GCS -
BACKUPS

29

GKE

VPC A

PROD PJT

GKE

VPC B

QA PJT

GKE

VPC C

STAGING PJT

GCR

VPC D VPC E

GCS

IMAGE REPO PJT TF STATE PJT

CDE

PAYBASE GCP ORGANIZATION

Paybase’s way of splitting environments

VPC F

GCS

BACKUPS PJT

01 Security

02 Separation of concerns

03 Reduction of PCI DSS scope

04 Easier to organize RBAC

Challenge 3: Benefit

30

Challenge 3: The What

As a PCI compliant PSP, I am required to remove all
test data and accounts from system components before
the system becomes active/goes into production
(req.6.4.4)

31

Challenge 4: The What

As a PCI compliant PSP, I am required to perform
quarterly internal vulnerability scans,address
vulnerabilities and perform rescans to verify all “high
risk” vulnerabilities are resolved in accordance with
the entity’s vulnerability ranking.(req.11.2.1)

32

Challenge 4: The
How

Image scanning

33

Here’s a diagram

34

Summary

● security is not a point in time but an ongoing journey

● you can use OSS and achieve a good level of security

● we need to challenge the PCI DSS status quo

35

Resources

✓ https://www.4armed.com/blog/hacking-kubelet-on-gke/

✓ https://www.4armed.com/blog/kubeletmein-kubelet-hacking-too

l/

✓ https://itnext.io/how-a-naughty-docker-image-on-aks-could-giv

e-an-attacker-access-to-your-azure-subscription-6d05b92bf811

36

https://www.4armed.com/blog/hacking-kubelet-on-gke/
https://www.4armed.com/blog/kubeletmein-kubelet-hacking-tool/
https://www.4armed.com/blog/kubeletmein-kubelet-hacking-tool/
https://itnext.io/how-a-naughty-docker-image-on-aks-could-give-an-attacker-access-to-your-azure-subscription-6d05b92bf811
https://itnext.io/how-a-naughty-docker-image-on-aks-could-give-an-attacker-access-to-your-azure-subscription-6d05b92bf811

Thank you
<call to action here>

