
�1

Cloud Native Data Pipelines
with Apache Kafka

Gwen Shapira, Software Engineer @gwenshap

�2

What is a Cloud Native Application?

�3

Common ideas
Resilience Elasticity

Agility DevOps

�4

You will build
Cloud Native Applications

from 
Non Cloud Native components

�5

What do  
Cloud Native architectures  

look like?

�6

You Have Microservices

�7

They need to communicate

Returns?

Fulfill
Order

Validate
Order

Orders

Inventory

�8

I know! I’ll use REST APIs

�9

But, we forgot something…

 10

The Problem is DATA

�11

Cloud Native Architectures are Different. 

We need data architectures for cloud.

And Data is about context and sharing

�12

Order
Service

Validation

ValidateOrder(id, user, product, price, amount..)

True

Lets say I have this:

�13

We need Fraud Detection

�14

Order
Service

Validation

ValidateOrder(id, user, product, price, amount..)

True

Fraud
Service

Alert
Service

Option:
WARNING: Antipattern

�15

Order
Service

Validation

ValidateOrder(id, user, product, price, amount..)

True

Fraud
Service

Order
history

Service

Option:

customer
history
Service

credit alerts
Service

WARNING: Antipattern

�16

Order
Service

Validation

ValidateOrder(id, user, product, price, amount..)

True

What I want is really smart validator

�17

Order Service

Validation

Maybe even more than one

Proxy

new
Validation

�18

The challenges

● Services are really Stateful

● Data has history

● Data is shared

�19

Lets Look at Patterns

�20

Publish Events

�21

Events are not:

• Commands
• Queries
• Requests

• Things that happened
• Notification
• Data

Events are:

�22

Buying an iPad  
(with REST)

- Orders Service calls Shipping

Service to tell it to ship item.

- Shipping service looks up address

to ship to (from Customer

Service)

Submit
Order

shipOrder() getCustomer()

Orders
Service

Shipping
Service

Customer
Service

Webserver

�23

Using events for Notification

- Orders Service no longer knows

about the Shipping service (or any

other service). Events are fire and

forget.

Submit
Order

Order
Created

getCustomer()
REST

Notification

Orders
Service

Shipping
Service

Customer
Service

Webserver

Event Bus == Kafka

�24

Using events to  
share facts

- Call to Customer service is gone.

- Instead data in replicated, as

events, into the shipping service,

where it is queried locally. .
Customer
Updated

Submit
Order

Order
Created

Data is
replicated

Orders
Service

Shipping
Service

Customer
Service

Webserver

Event Bus == Kafka

Need someone else’s events?  
Change Data Capture

Mainframe

APACHE KAFKA

Kafka  
Connect

Need someone else’s events?  
Change Data Capture

Database

APACHE KAFKA

Kafka  
Connectupdate table accounts  

set total=total+50
where id=600

{key=600,
old_record={…  
 vip=f  
 total=300  
…},  
new_record={…  
 vip=f,  
 total=350,
 …  
 }
}

Debezium

�27

Local state 
for Microservices

�28

{order:1, 
 product: iphone,
 status: created
}

We have a stream of events:

event 1

{order:1, 
 product: iphone,
 status: valid
}

event 2

{order:2, 
 product: ipad,
 status: created
}

event 3

{order:1, 
 product: iphone,
 status: shipped
}

event 4

�29

{order:1, 
 product: iphone,
 status: created
}

Store current state:

event 1

{order:1, 
 product: iphone,
 status: valid
}

event 2

{order:2, 
 product: ipad,
 status: created
}

event 3

{order:1, 
 product: iphone,
 status: shipped
}

event 4

Order 1 -> iphone, shipped 
Order 2 -> ipad, created

�30

Duplicate data?

Low risk due to
shared event
stream

Just the data you
need

Sharded with the
application

�31

�32

{order:1, 
 product: iphone,
 status: created
}

Sharded View
{order:1, 
 product: iphone,
 status: valid
}

{order:2, 
 product: ipad,
 status: created
}

{order:1, 
 product: iphone,
 status: shipped
}

Order 1 ->  
iphone, shipped 

Order 2 ->  
ipad, created 

Odd orders:

Even orders:

�33

Better than shared DB

● The data I need,  
the way I need it

● Reduced dependencies

● Low latency

● Events are also triggers

�34

select order_id,
customer_id, product where

total_value>10000  
…  

And also, if you get one
like that in the future,

execute callback()

�35

Reporting Live  
from Streams of Events

�36

Requirements

● Aggregated reports

● Combining data from many

services

● Updated in real time

● Scalable and resilient

�37

Orders

shipments

customers

Reporter 1

Reporter 2

My Browser

�38

Instance 2

Trade Stats App

Instance 1

Trade Stats App

Changelog Topic

restore

State Recovery

�39

3-layer data model

�40

Who controls the data
format?

● Publishers?

● Consumers?

● How do we share events?

Producer

Integrator

Consumer 
pre-processor

Raw
events

Clean 
Standard 
events

Enriched  
Aggregated
events

Consumer

In Event Streaming World
Event Schemas ARE the API

�43

Take Away Points!

�44

Remember This

● As you design cloud-native

architectures  
- don’t forget the data

● Publish events

● Build views and reports from

events

● Be nice to each other

�45

Orchestration vs Choreography

�46

Orchestration: One Service to Rule them all

Step 1

Step 2 Step 3

Step 4Orchestrator

Step 1  
If success:
 Step 2
Else:
 Step 3
Finally:
 Step 4

�47

Choreography: We react to each other

Step 1

Step 2 Step 3 Step 4

Orders Success Fail Shipped emailed

