Putting Deep Learning Models in Production

Sahil Dua

Let's imagine!

whoami

- → Software Developer @ Booking.com
- → Previously Deep Learning Infrastructure
- → Open Source Contributor (Git, Pandas, Kinto, go-github, etc.)
- → Tech Speaker

Agenda

- → Deep Learning at Booking.com
- → Life-cycle of a model
- → Training Models
- → Serving Predictions

Scale highlights.

1,500,000⁺
room nights
booked
every 24 hours

Deep Learning

- → Image understanding
- → Translations
- → Ads bidding
- **→** ...

Classes	Score
oceanfront	0.79 0 1
nature	0.79 0 1
beach house	0.62 0 1
building	0.62 0 1
penthouse	0.61 0 1
apartment	0.61
housing	0.61 0 1

Classes	Score
oceanfront	0.79 0 1
nature	0.79 0 1
beach house	0.62 0 1
building	0.62 0 1
penthouse	0.61 0 1
apartment	0.61 0 1
housing	0.61 0 1

Sea view: 6.38

Balcony/Terrace: 4.82

Photo of the whole room: 4.21

Bed: 3.47

Decorative details: 3.15

Seating area: 2.70

Using the image tag information in the right context Swimming pool, Breakfast Buffet, etc.

Lifecycle of a model

Lifecycle of a model

Training a Model - on laptop

Training a Model - on laptop

Machine Learning workload

- → Computationally intensive workload
- → Often not highly parallelizable algorithms
- → 10 to 100 GBs of data

Why Kubernetes (k8s)?

- → Isolation
- → Elasticity
- → Flexibility

Why k8s - GPUs?

- → In alpha since 1.3
- → Speed up 20X-50X

```
resources:
limits:
alpha.kubernetes.io/nvidia-gpu: 1
```

Training with k8s

- → Base images with ML frameworks
 - ◆ TensorFlow, Torch, VowpalWabbit, etc.
- → Training code is installed at start time
- → Data access Hadoop (or PVs)

Startup

Startup

Streaming logs back

Exports the model

Booking.com

- → Stateless app with common code
- → Containerized
- → No model in image
- → REST API for predictions

- → Get trained model from Hadoop
- → Load model in memory
- → Warm it up
- → Expose HTTP API
- → Respond to the probes

Deploying a new model

- → Create new Deployment
- → Create new HTTP Route
- → Wait for liveness/readiness probe

Performance

PredictionTime = RequestOverhead + N*ComputationTime

N is the number of instances to predict on

Optimizing for Latency

- → Do not predict if you can precompute
- → Reduce Request Overhead
- → Predict for one instance
- → Quantization (float 32 => fixed 8)
- → TensorFlow specific: freeze network & optimize for inference

Optimizing for Throughput

- → Do not predict if you can precompute
- → Batch requests
- → Parallelize requests

Summary

- → Training models in pods
- → Serving models
- → Optimizing serving for latency/throughput

Next steps

- → Tooling to control hundred deployments
- → Autoscale prediction service
- → Hyper parameter tuning for training

Want to get in touch?

LinkedIn / Twitter / GitHub

@sahildua2305

Website

www.sahildua.com

@sahildua2305