
Airbnb’s Great Migration: 
Building Services at Scale

JESSICA TAI / MARCH 4, 2019 / Q CON LOND ON

@jessicamtai

2014

@jessicamtai

2015+

@jessicamtai

Hi, I’m Jessica. 

I pair program  
with my corgi.

Why migrate? Service design tenets

Incremental 
comparison

Best practices Results

Decomposition

@jessicamtai

Why migrate?

Best practices Results

Incremental 
comparison

Service design tenets

Decomposition

@jessicamtai

Why migrate?

Best practices Results

Incremental 
comparison

Service design tenets

Decomposition

@jessicamtai

Why migrate?

Best practices Results

Incremental 
comparison

Service design tenets

Decomposition

@jessicamtai

Why migrate?

Best practices Results

Incremental 
comparison

Service design tenets

Decomposition

@jessicamtai

Why migrate?

Best practices Results

Incremental 
comparison

Service design tenets

Decomposition

@jessicamtai

Monorail, our Ruby on Rails monolith

@jessicamtai

Easy start with monoliths
E ARLY AIRBNB

Client traffic

Shared
database

Monorail

Data access query

Business logic

Presentation view

@jessicamtai

@jessicamtai

@jessicamtai

WHY DECIDE TO MIGRATE?

@jessicamtai

@jessicamtai

More incidents Slower deploy trains

@jessicamtai

More incidents Slower deploy trains

@jessicamtai

Our solution: Service-oriented architecture (SOA)
NETWORK OF LO OSELY-COUPLED SERVICES

Client

API gateway

Service1

Service2

Database2Database3

Service3

@jessicamtai

Checkout page in SOA

Business travel service

Cancellation service

Home demand service

Pricing service

Home service

Reservation service

Messaging service

@jessicamtai

SERVICE DESIGN TENETS

@jessicamtai

Services own reads & writes  
to their data @jessicamtai

Services address a specific concern

@jessicamtai

Avoid duplicate functionality
https://www.flickr.com/photos/popilop/331357312

@jessicamtai

Data mutations propagate  
via standard events @jessicamtai

Build for production

@jessicamtai

DECOMP OSE BY  
REQUEST LIFE CYCLE

@jessicamtai

Request life cycle

Client traffic

Shared
database

Monorail

Data access query

Business logic

Presentation view

V1: MONORAIL

@jessicamtai

Request life cycle

Monorail

API traffic

Routing & view

Business logic, model, data  
via services

Client traffic

V2: MONORAIL & SERVICES

@jessicamtai

MIDDLE TIER
Shared business logic

Service types
STRICT FLOW OF DEPENDENCIES

PRESENTATION
Synthesize

DERIVED DATA
Shared context, multiple sources

DATA
Entity read and writes

@jessicamtai

MIDDLE TIER
Shared business logic

PRESENTATION
Synthesize

DERIVED DATA
Shared context, multiple sources

DATA
Entity read and writes

Service types
STRICT FLOW OF DEPENDENCIES

@jessicamtai

MIDDLE TIER
Shared business logic

PRESENTATION
Synthesize

DERIVED DATA
Shared context, multiple sources

DATA
Entity read and writes

Service types
STRICT FLOW OF DEPENDENCIES

@jessicamtai

MIDDLE TIER
Shared business logic

DERIVED DATA
Shared context, multiple sources

DATA
Entity read and writes

PRESENTATION
Synthesize

Service types
STRICT FLOW OF DEPENDENCIES

@jessicamtai

PRESENTATION
Synthesize

MIDDLE TIER
Shared business logic

DERIVED DATA
Shared context, multiple sources

DATA
Entity read and writes

Service types
STRICT FLOW OF DEPENDENCIES

@jessicamtai

Homes

H O S T E D B Y K I T T Y · A P T O S , C A L I F O R N I A

Mushroom Dome

@jessicamtai

Homes data
service

Shared
database

Monorail

Data access query

Business logic

1. Migrating core data models

Presentation view

Homes
database

@jessicamtai

Homes data
service

Shared
database

Monorail

Data access query

Business logic

2. Migrating core business logic

Presentation view

Homes
database

Pricing derived
data service

Pricing trends
data store

@jessicamtai

Homes data
service

Shared
database

Monorail

Data access query

Business logic

3. Migrating core product views

Presentation view

Homes
database

Pricing derived
data service

Pricing trends
data store

Checkout
presentation

service

@jessicamtai

Homes data
service

Shared
database

Monorail

Data access query

Business logic

4. Migrating core product writes

Presentation view

Homes
database

Homes
validation

middle-tier
Pricing derived

data service

Pricing trends
data store

Checkout
presentation

service

@jessicamtai

Request life cycle

Monorail

API traffic

Routing & view

Client traffic

V2: MONORAIL & SERVICES

@jessicamtai

Business logic, model, data  
via services

Request life cycle

API gateway

Middleware

Session data
service

Authentication
data service

Oauth data
service

Risk derived  
data service

. . .

Request 
context

Presentation, logic, data

V3: S OA & API GATEWAY

Routing

@jessicamtai

Request life cycle

API gateway

Middleware

Session data
service

Authentication
data service

Oauth data
service

Risk derived  
data service

. . .

Request 
context

Web rendering
service

HTML viewV3: S OA & API GATEWAY

Routing

@jessicamtai

Presentation, logic, data

Monolith
world

Services
world

The FutureTM

@jessicamtai

Migration
world

Monolith
world

Services
world

@jessicamtai

COMPARE FOR DIFFERENCES

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Read path A

Read path BMonorail

Service

Database

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Production 
traffic

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

100%

Production 
traffic

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

100%

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monorail

Service

Database

Response A

Response B

Consumer +  
offline

comparison
framework

@jessicamtai

Dual read comparison

WaitRamp & waitCompareGate

Admin web UI
configuration

1% traffic Gradual
increments

Gather traffic
patterns

All traffic through
service only

Switch

Monorail

Service

Database

The only read path

@jessicamtai

Write comparison
DUAL WRITE TO SEPARATE DATABASES

Presentation service

Write validation
middle tier service

Write path A

Write path B

 Data service
(production)

 Data service
(shadow)

Consumer +  
offline comparison

framework

Monorail

Payload A Payload B

@jessicamtai

s

Write comparison
DUAL WRITE TO SEPARATE DATABASES

Presentation service

Write validation
middle tier service

The only write path

 Data service
(shadow)

Monorail

@jessicamtai

API gateway comparison

API gateway

Presentation service

Product logic

Monorail

Product logic

Original request  
(no middleware applied)

Shadow request  
with context

Add request context

@jessicamtai

Middleware

@jessicamtai

Shadow 
request copy

API gateway comparison

API gateway

Presentation service

Product logic

Request  
with context

Middleware

@jessicamtai

Incremental migration

@jessicamtai

! Production traffic with partially complete service

○ e.g. batch API /loadUsers

○ Fetch users only by user id

! Unblock clients

Migrate by endpoint

@jessicamtai

Migrate by attribute

Service Monorail

Database

Read migrated 
attributes

Read not-yet-migrated  
attributes

Database

Presentation service

Production traffic

@jessicamtai

S OA BEST PRACTICES

@jessicamtai

Frameworks
Auto-generate code

Testing & deploying
Replay production traffic

Observability
Standard templates

Standardize service building
S CALE WITH CONSISTENCY

@jessicamtai

Service

Service & client setup

Business logic

@jessicamtai

Service

Service & client setup

Business logic

Endpoint logic

Server
transport

@jessicamtai

Service

Service & client setup

Business logic

Endpoint logic

Server
transport

Java client

Ruby client

Client
transport

Client
transport

@jessicamtai

Service

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Endpoint logic

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

@jessicamtai

Service

Endpoint logic

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

@jessicamtai

Service

Endpoint logic

Service & client setup

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

@jessicamtai

Frameworks using Thrift IDL

@jessicamtai

IDL
Service

Endpoint logic

Business logic

Server metrics

Server
diagnostics

Startup /
teardown

Dashboard
Dashboard

Alert
Alert

Alert

Runbook
documentation

Metrics
Data

validation
Server

transport
Server

resilience

Java client

Ruby client

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Metrics
Client

transport

Data
validation

Error
handling

Resilience

Type
checking

@jessicamtai

Thrift IDL
API FRAMEWORK

/** Batch request for demo data */
struct LoadSomeDataRequest {
 1: optional set<i64> ids
 /** Some extra context baz */
 2: optional bool fooBar (personal)
}

@jessicamtai

Thrift IDL
API FRAMEWORK

/** id to data response */
struct LoadSomeDataResponse {
 1: optional map<i64, SomeData> data
}

@jessicamtai

/** Batch request for demo data */
struct LoadSomeDataRequest {
 1: optional set<i64> ids (personal)
 /** Some extra context baz */
 2: optional bool fooBar
}

/** /loadSomeData batch endpoint */ 

LoadSomeDataResponse loadSomeData
 
(1: LoadSomeDataRequest request) 

throws (1: SomeException exception1)
 
(accept_replay = "true", rate_limit = "true")

Thrift IDL
API FRAMEWORK

@jessicamtai

Thrift annotations

@jessicamtai

Block comments  
from .thrift file

@jessicamtai

TRY TRY AGAIN SUCCESS

FAIL FAST

@jessicamtai

Separate async
worker thread pools

Graceful
degradation

@jessicamtai

Testing & deploying
TIMELINE

ProductionCanaryDiffyStaging

@jessicamtai

Local dev

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Dev
environment

supports shared
dev services

@jessicamtai

Testing & deploying
TIMELINE

Replayed
production
traffic with

other staging
services

ProductionCanaryDiffyStagingLocal dev

@jessicamtai

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Compare
responses from
staging against

production

@jessicamtai

Regression Testing
DIFF Y

Staging
(new code)

Primary  
(old code)

Secondary
(old code)

Raw response
differences

Non- 
deterministic

noise

Filtered
response

differences

Diffy

Replayed traffic

github.com/twitter/diffy

@jessicamtai

https://github.com/twitter/diffy

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Deploy to single
instance of
production

@jessicamtai

Testing & deploying
TIMELINE

ProductionCanaryDiffyStagingLocal dev

Confidently
deploy to prod

@jessicamtai

@jessicamtai

@jessicamtai

EMP OWERING THE MIGRATION

@jessicamtai

2016:  
One small infra team

Airbnb’s SOA progress

@jessicamtai

Product culture: 
 ship things quickly

@jessicamtai

Org challenges:  
service building in parallel

@jessicamtai

Product
Frontend 
Monorail

Infrastructure
Backend

Monorail + services

Volunteer 
sysops 
on-call

@jessicamtai

@jessicamtai

Product
Frontend 
Monorail

Infrastructure
Backend

Monorail + services

Volunteer 
sysops 
on-call

On-call rotation per team
SERVICE OWNERSHIP

Checkout
service Pricing service User service

Product Team Infrastructure Team

@jessicamtai

PRO GRESS S O FAR?

@jessicamtai

2016:  
One small infra team

2019:  
Whole engineering org

Airbnb’s SOA progress

@jessicamtai

! Faster build & deploy times

○ Hours (Monorail) to minutes (service)

○ Fewer reverts

! Quicker bug fixes

! Increased developer productivity happiness

Promising initial results
SUCCESS

@jessicamtai

! Lower latency from parallelization

○ Ruby monorail single-threaded

○ Java services multi-threaded

! Search results page 3x faster

! Homes description page 10x faster!

Latency results
SUCCESS

@jessicamtai

Monorail freeze

@jessicamtai

500+ 67%
Deploys in MonorailEngineers

2016

@jessicamtai

500+ 67%

Deploys in MonorailEngineers

1200+ 7%

2016

2019

@jessicamtai

Production traffic via API Gateway40%

@jessicamtai

IDL services in production0400+

@jessicamtai

Checkout page required message in SOA Checkout presentation

Home data

Reservation data

Review data

Pricing
derived data

Home demand
derived data

Cancellation
derived data

Business travel
derived data

Messaging data

@jessicamtai

SOA has its challenges
CAUTION

@jessicamtai

Distributed services
CAUTION

@jessicamtai

Multiple, isolated databases
CAUTION

@jessicamtai

Complex service orchestration
CAUTION

@jessicamtai

! Prepare for a long commitment

! Decompose incrementally

! Scale with auto-generating frameworks, tools

! Shift development culture

SOA migration
TAKE AWAYS

@jessicamtai

Look both ways  
during your Great Migration

@jessicamtai

@JESSICAMTAI

Q CON LOND ON 2019

