Disne streaming |, % . 40
Ml services *

Reactive systems
architecture

loT-like media processing

e Operates stream processing devices
e EXposes health-checks and pipeline topology

e Provides a global view of the pipeline

A distributed system without
durable messaging easily
grows Into a monolith

—e—

Device

Device
Shadow

Device Device

Shadow

Log file

Device Device

Shadow

Device
Shadow

Device

Message queue

A distributed system without
supervision Is binary:
working or failed

def makeDeviceRequest(request: DeviceRequest): Future[DeviceResponse] = ?2??

makeDeviceRequest(request).onComplete {
case Success(dr) =>
// working!
case Failure(ex) =>
/] failed!
log.error(ex)
1‘- scheduleOnce(1000L, makeDeviceRequest(request))

Naive timeouts cause

..other timeouts

..excessive downstream load
when combined with re-tries

= O

Device

Device
Shadow

e Timeout=2000 ms —\
e Timeout =1950 ms @
e Timeout =1900 ms

.

e Retries=3
* Timeoyjge= 666 ms

® Retries =2
e Timeout= 975 ms

® Retries =3

e Timeout= 633ms

e Deadline =2000 ms
e QoS = ..

° Deadllne =1950 ms
(] QQS —

e Deadline =1900 ms
e QoS = ..

def makeDeviceRequest(request: DeviceRequest): Future[DeviceResponse] = ?2??

makeDeviceRequest(request).onComplete {
case Success(dr) =>
// working!
case Failure(ex) =>
/] failed!
log.error(ex)
1‘- scheduleOnce(1000L, makeDeviceRequest(request))

implicit val sys: ActorSystem = ..

implicit val mat: ActorMaterializer = ..

val base = Uri(..).authority

val pool = Http(sys).cachedHostConnectionPool[String](base.host.address(), base.port)

val correlationId = UUID.randomUUID().toString
val rq = HttpRequest(..)

val = Source.single(rgq » correlationId)

B .via(pool)
o~ . recoverWithRetries(5, ..)
.runForeach(...)

Failed

Failed

makeDeviceRequest(request)

A distributed system without
back-pressure will fail or will
make everything around it fail

| “Let’s just go with the defaults for the thermal exhaust ports.” —Galen Efso

implicit val sys: ActorSystem = ..

implicit val mat: ActorMaterializer = ..

val base = Uri(..).authority

val pool = Http(sys).cachedHostConnectionPool[String](base.host.address(), base.port)

val correlationId = UUID.randomUUID|e pool size

val rq = HttpRequest(..) e TCP connect timeout
e TCP receive timeout

val _ = Source.single(rg » correlattonIc

B .via(pool)

.recoverWithRetries(5, ..) <£® How many retries?
.runForeach(...) e Within what time-frame®?

e Body receive timeout
e Flow timeout

e |[dempotent endpoints?
® Nonces, etc.

A distributed system without
observablility and monitoring Is
a stack of black boxes

JVM

Actor system instrumentation

OS container Log VM

Incident
mangement

monitoring Lo L aggregation observability

Monitoring Observability

A distributed system without
robust access control is o
ticking time-bomb

@a Message

string correlationld =
string token = 2;
bytes signature = 3;
bytes payload = 4;

A distributed system without
chaos testing Is going to fail in
the most creative ways

val mb = Array|[Byte](8, 1, 12, 3, 65, 66, 67,

&99, ..., 99)
X.validate(mb)

)

Exception in thread "main" java.lang.StackOverflowError
at .. SStreamDecoder.readTag(..:2051)
at .. SStreamDecoder.skipMessage(..:2158)
at .. SStreamDecoder.skipField(..:2090)

Va'L mj — IIXII : mimnn e 2@@@
JsonFormat. fromJsonString[X](mj)

(A

Exception in thread "main" java.lang.StackOverflowError
at .. JsonStreamContext.<init>(..:43)
at .. JsonReadContext.<init>(..:58)
at .. JsonReadContext.createChildObjectContext(..:128)
at .. ReaderBasedJsonParser. nextAfterName(..:773)
at .. ReaderBasedJsonParser.nextToken(..:636)
at .. JValueDeserializer.deserialize(..:45)

message DeviceRequest {
o string method = 1;
string uri = 2;
map<string, string> headers = 3;
string entity content type = 4;
bytes entity = 5;

string schedule time = 10;
MisfireStrategy misfire strateqy = 11;

enum MisfireStrategy {
BEST _EFFORT = 0;
FORGET = 1;

¥
}

class DeviceActor extends Actor {

override def receive: Receilve = {
case TopicPartitionOffsetMessage(tpo, dr: DeviceRequest,) =>
val d = Duration.between(ZonedDateTime.now, ZonedDateTime.parse(dr.scheduleTime))
context.system.scheduler.scheduleOnce(FiniteDuration(d.toMillis, TimeUnit.MS), self, dr)
case d: DeviceRequest =>
Source.single(d -> ..).via(..).run(..)

message DeviceRequest {

string method = 1) s "IQYOQUQNEb@eerl&QQc§f\Ché9§"
STErUING UML = 2 ué/%%gé%g'n‘“ﬂ§> ;??9 ”oig;g% %
map<string, string> headers = 3;-.. Map.emﬁt§ = 5 5,
string entity content type = 4; . "#Cmds=({'/bin/echo', #eps})"
bytes entity — 5; .. "40GdeVZdOKBp __n

Str-'l_ng Schedule_time — 1@; f"2017'10'14T11:42:06+®0:®0H

MisfireStrategy misfire_strategy = 11;--~"BEST EFFORT"

enum MisfireStrategy {
BEST EFFORT = 0;
FORGET = 1;

¥
}

class DeviceActor extends Actor {

override def receive: Receilve = {
case TopicPartitionOffsetMessage(tpo, dr: DeviceRequest,) =>
val d = Duration.between(ZonedDateTime.now, ZonedDateTime.parse(dr.scheduleTime))
context.system.scheduler.scheduleOnce(FiniteDuration(d.toMillis, TimeUnit.MS), self, dr)

case d: DeviceRequest =>
Source.single(d -> ..).via(..).run(..)

class DeviceActor extends Actor {

override def receive: Receive = {
oF—case TopicPartitionOffsetMessage(tpo, dr: DeviceRequest,) =>
val d = Duration.between(ZonedDateTime.now, ZonedDateTime.parse(dr.scheduleTime))
context.system.scheduler.scheduleOnce(FiniteDuration(d.toMillis, TimeUnit.MS), self, dr)

case d: DeviceRequest =>
Source.single(d -> ..).via(..).run(..)

"Q Exception in thread ".." java.time.format.DateTimeParseException:
Text '2014-12-10T05:44:06.635Z[@] could not be parsed at index 21

¢ Exception in thread "." java.time.format.DateTimeParseException:
Text '2014-12-10T05:44:06.635Z[GMT] could not be parsed at index 11

¢ SIGSEGV (0xb) at pc=0x000000010fda8262, pid=21419, ti1d=18435
V [libjvm.dylib+0x3a8262] PhaseldeallLoop::idom no update(Node*) const+0x12

"Q GET http://host/foo.action Content-Type: #cmds=({'/bin/echo', #eps})

https://github.com/minimaxir/big-list-of-naughty-strings

Do tell another anecdote...

WwWe measured

e For every file in every commit in every project...
e Classification of the kind and quality of code

e Matching production performance data from PagerDuty

7,

{

!

"))
'

performance reactive amazon.dynamodb logging project

—

0.3 - 0.3+

performance reactive amazon.dynamodb logging pAroject

0.3 8/

performance reactive amazon.dynamodb logging project

B 0.3

performance reactive amazon.dynamodb logging

0.15 7

y |

07?0

77/ N\
¥ N
—
AN
3

7
B

The biggest impact on
production performance
comes from...

1'2ouewJoliad

|
(g
Lo

o
9Aljoesal

Four things successful projects do
throughout their commit history

e Structured and performance-tested logging
e Monitoring & [distributed] tracing
e Performance testing

e Redactive architecture & code

Pl‘()‘(()(-()l ('11‘(1().\'

Jan Machacek. Miguel Lopez. Matthew Squire

June 19. 2018

Abstract

Chaos engineering is a way to introduce unexpected failures in order to discover a system’s failure modes. The chaos

engineering tools usually introduce faults that focus on the

onnections between the system’s components by disrupting

the expected operation of the network (by introducing latency. packet loss. all the way to complete network partitions) or

mg the operation of the nodes hosting the compone

nts (by reducing the available CPU or memory resources

on chaos testing showed that this is not only msufficient. but that more “damage”™ can be achieved by focusing

t on how a system handles unexpected input—trivially
ontain invalid values: or structurally valid messag

yvbly handle invalid and malicious inputs. the

1 Protocol chaos

Validation of inputs is acknowledged to be important. yet
it is very often not implemented as thoroughly as it should
be: not for the lack of understanding its importance. but
jor the effort it requires. Consider a component that ac-

+

cepts a message 10 announce a greeting n number of tumes:

it exposes a REST endpoint at POST /greeting andex

invalid messages: or structurally valid messages that

. vet damaging or malicious values 1 the system can

chaos engineering an | 1sed to tease out further failure

into multiple unit tests. But even with thi lit. the initial
problem of imagining and then coding the possible messages
still remains. In order to allow valid messages conforming to
SOIE })[ntxn n: to be 2e1¢ ;'(U_ui, t};n e 116 (i~ to be a ma i;;m .
readable description of the protocol. This description needs
to include the elements and their types. The types should in
clude primutives (integers. floats. strings. booleans): product

§

Fantastic code and where to find it

Jan Machacek, Anirvan Chakraborty, Christian Villoslada

September 14, 2018

Abstract

Distributed systems are built in recognition that individual nodes will fail, but the system needs to continue to
serve the users’ requests. However, there is no free lunch: the price to pay for having a system that can tolerate
failures is its complex implementation and operation. Unfortunately, complex implementation and operation
may present a barrier to fast-paced iterative project and product development. There needs to be a good balance
between perfection and useful functionality, but just which portion of a system needs detailed attention and
which part can focus on bringing new functionality?

This paper presents the results of antomated source code analysis of a selection of distributed systems; it
provides the answer to “what are the three things to get absolutely right in a distributed system”; and-given an
organisation’s source code repository-links to the best implementations in that repository. Furthermore, when
combined with production incidents, the automated source code analysis tool predicts production performance:
the number of incidents (per day), their severity, and the time-to-resolution.

Motivation “osmosis”, where the teams informally interact with each

1 D . o
other |, As organisations grow, the overhead of the informal

Engineering teams recognise the need to have battle- communication becomes unacceptable; global organisations
hardened code in production, especially if the system needs with teams working in different time-zones make any infor-

pects a message with the greeting and couni

The description of the service and the field names in the des ript

. 2 1 7 17
types (contammers of Pl’lllll'tl\" S and otner proaud IS). collex

values. fions (arrays. and even maps): it is useful if the protocol

on includes sum types. The protocol tooling should

mput message provide mtuition about the expected values: 3also be able to take the protox ol dese riptions and generate

11
’ ilc

g can be one of { y ' source code for the target language and framework combi-

and sim- nation. Protocol Buffers |7] is an example of the protocol

uar: the value lor count t

(1-5). The first level of validation is to check that the val . 1. : 1 - 1 . 8
\1:9 1€ I1ISL It 1 O validation 1s 1o 1ICCK Lilatl i al quirements Il“ COde n L‘_\L.I;g 1 shows how to define

J 111

ues posted indeed represent valid "types (the greeting message X with two fields in the Protocol Buffers syntax

is text: the count is an integer). This is “included for e X
>Ssage
free” in strongly-typed languages if the input message uses int32
. P . . 1 %4 1. 4 7 string greet

appropriate types for its members: and it is simple to do in
weakly-typed languages. The next level of validation should List T . el AaBhka
.isting 1: Trivial protocol definition

I

locus on acceptable range ol values For the count prop-
i
I

erty. the validation code should very that 1t 1s indeed 1n the

- ¢ =\ ™ 2 3 2 & 2

rang § ’ - 8) h alidation forth > fiana 2 2 1. v 3 ‘ -

range ol (sav) \ |) Iu? validation coage jortne greeting used to generate the source code for Scala. Swaft. (

property can be more compiex: 1t is dincuit to precsely
L

1o 6 obid or invalid <frin o T le invalid o L . . Ce
define valid or invalid string . The possible invalid ex- ,cludes definition of the protocol: the definit

amples include empty string. very long string. etc: though pseudo-code in [Listing 2|
it remains easy to find an invalid string that nevertheless
passes the wvalidation code. and it is just as easy to find
valid string that fails. (Consider “Good morning. Llanfairp
wllgwvngvllgogerychwyrndrobwllllantysiliogogogoch!™: it is
perfectly valid greeting in a small village in North Wales
If discovering the validation rules for greeting is difficult.
it i1s even more difficult to exhaustively test those rules.

It is possible to implement a test that verifies that the

system under test t

processes L‘[‘u message as expex {v(i ”n‘.‘.‘—

ever. this is a very broad requirement. so it is usually split

1s an mteger 1 the range ol definition language and rich tooling that satisfies these

ion is shown

a

Given this definition. the Protocol Buffers tooling can be

many other languages. The generated code for each message

i

to handle truly global traffic. {SRE plug here.;, Engineering
teams responsible for such systems have developed experi-
ence (usually though the pain of production support) that
allows them to write code that avoids causing the biggest
headaches they have experienced. It is crucial for teams
that do not have this experience yet to be able to very easily
discover the “unknown unknowns” that are likely to cause
problems in production. The experienced teams are happy
to share what they have learned, but the new teams are un-
likely to recognise that the need to ask for help with their
seemingly innocent-looking code. Consider the code in [List-
ling 1/ that deserialises a Protocol Buffers[7] binary message
into its Scala representation using ScalaPB[9)|.

def deser(in: Array|[Byte]): Try[X] X.validate (in)

Listing 1: Deserialisation problems

This code follows the examples found on the ScalaPB doc-
umentation; a team might not recognise that it is likely to
cause serious production problems: out—of—=memory and
stack—=overflow exceptions when decoding damaged or
malicious inputs[5|. The most dangerous aspect of the code
in |Listing 1]is not the technical problem, but the fact that it
looks completely innocent. The team that wrote this code
does not realise that they should contact other teams to ask
for advice on how to improve it.

In order for the entire organisation to improve, it is cru-
cial to discover and then share this type of knowledge and
experience. Organisations with only a few small engineer-

ing teams can achieve some degree of knowledge-sharing by

mal knowledge sharing nearly impossible. Attempts to for-
malise the knowledge sharing process through layered meet-
ings significantly decrease throughput; enterprise libraries
that attempt to encompass every detail learned decrease the
rate of innovation. Effective knowledge sharing should main-
tain high level of engineering freedom, encourage creativity
and novel technical approaches.

2 Large-scale knowledge discovery

The fantastic code system is a novel approach to knowledge
discovery and sharing. It works by cloning all projects from
the organisation’s source code repository, performing auto-
mated source code analysis at each commit and matching
it with the then-current production performance data. The
source code analysis measures how much and how well a
particular concept (e.g. Akka, Apache Kafka, Amazon Dy-
namoDDB, etc.) is implemented in regions of each source
code file. Its visualisation component in [Figure 1| provides
an efficient tool to find examples of code (links to regions
of source code in the organisation’s GitHub) that represent
good (or bad) implementation of the concepts together with
the production data to help the teams discover code that
they should adopt or avoid.

To further assist in the discovery of the “unknown un-
knowns” the system includes a tool that predicts the pro-

| P = . . .
['hink 10-15 engineers sharing the same space, helping each other
when problems arise,

Thank you

jan.machacek@disneystreaming.com
Matthew.squire@disneystreaming.com

