|<:>|

SUPERSONIC. SUBATOMIC. JAVA.

@SanneGrinovero

https://twitter.com/SanneGrinovero

LONG RUNNING SERVER,
PERFORMANCE

w= Other e

/_/

AT IF... CONTINUOUS
DELIVERY

we Other == Java

BLACK FRIDAY: OUR
WORST NIGHTMARE?

|

o

SAVE UP TO
0%

BLACK
FRIDAY

NOW IT’S TIME TO SAVE BIG

WE HAVE A PROBLEM?

Long warmup times are no longer acceptable

ENEMIES OF SLOW
STARTUP

Continuous Delivery
Elasticity, scale on cloud: trends, people, reality

"M SANNE GRINOVERO

Dutch, Italian, living in London.

Red Hat, middleware engineering
R&D
Hibernate team lead
Quarkus, founding team member
Architect, Sr. Principal Software Engineer

Passionate about all OSS, Java & performance

SUPERSONIC 7

FAST BOOT is now essential
How Quarkus achieves it

SUBATOMIC ?

LOW MEMORY, high density
How Quarkus achieves it

JAVA ?

Enable use of existing know-how
Leverage all great existing libraries
And yet enable strong innovation

WHAT IS QUARKUS

TOOLKIT

and

FRAMEWORK

for writing Java applications

LIGHT, CLOUD FRIENDLY,
DESIGNED FOR GRAALVM

Helps overcome limitations of GraalvVM

LIGHT, CLOUD FRIENDLY,
DESIGNED FOR GRAALVM

Helps overcome limitations of GraalvVM

Embrace these limitations, we love them!

* class

QUARKUS

S, JVM GraalVM.

-
—

EXTENSIONS

For each Java framework, a Quarkus extension
Makes it compatible with GraalVM native-images

And makes it much lighter to run on JVM

LIBRARIES YOU ALREADY KNOW

x by & D

‘Q\'e./'g’ ’
TAEGER INfiniscon

https://vertx.io/
http://hibernate.org/
https://resteasy.github.io/
https://camel.apache.org/
https://netty.io/
https://kubernetes.io/
https://www.jaegertracing.io/
https://prometheus.io/
http://kafka.apache.org/
https://infinispan.org/

Unifies
I IMPERATIVE and REACTIVE

()

SayService say; Publisher<String> reactiveSay

(MediaType.TEXT PLAIN) (MediaType.SERVER_ SE
String hello() { Publisher<String> stre
say.hello(); reactiveSay;

CONTAINER FIRST

CONTAINER FIRST

& Small size on disk v Small container images

CONTAINER FIRST

& Small size on disk v Small container images

R Fast boot time v/ Instant scale up

CONTAINER FIRST

& Small size on disk v Small container images

R Fast boot time v/ Instant scale up

8 LowRSS' memory ¥ More containers with
the same RAM

1) Resident Set Size

MEASURING MEMORY

RSS = all actual RAM consumed by the process
There's more than heap sizes!

ps -o pid,rss,command -p $(pgrep quarkus)
PID RSS COMMAND
11229 12628 ./target/quarkus-hello

See also:
developers.redhat.com/blog/2017/04/04/openjdk-
and-containers/

https://en.wikipedia.org/wiki/Resident_set_size
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/%22

MEMORY (RSS)

Quarkus + GraalVM Quarkus + OpenJDK Best of traditio

MEMORY (RSS)

Quarkus + GraalVM Quarkus + OpenJDK Best of traditio

REST 113 MB lMB -

MEMORY (RSS)

Quarkus + GraalVM Quarkus + OpenJDK Best of traditio

REST 113 MB lMB -
s s e

STARTUP TIME

Often frameworks use lazy initialization

"started" reported too early

STARTUP TIME

Often frameworks use lazy initialization
"started" reported too early

Measure time to first request

TIME TO FIRST REQUEST

DU @ D @ D T e @ L L @ e D L @ D L e L@ @

TIME TO FIRST REQUEST

DU @ D @ D T e @ L DL @ e D L @ D L e @ T @l

JPA & DB operations

Traditional Cloud-Native Stac

SHOW US?

Show me! REST / CRUD demo

HOW | T WORKS

HOW A TRADITIONAL
STACK WORKS

»6@6({}?\06 @

Built Java archive
/ deployment

HOW A TRADITIONAL
STACK WORKS

Search for configuration files,
Parse them

HOW A TRADITIONAL
STACK WORKS

DPRDCERIp > Bor

Classpath scanning to find
annotated classes.
Discover extension points,
plugins, optional features

HOW A TRADITIONAL
STACK WORKS

0P B0 B B> O

Build the metamodel,
Prepare injection points,
Generate proxies,
Enhance classes,
Validate the world

HOW A TRADITIONAL
STACK WORKS

Search for configuration files,
Parse them

HOW A TRADITIONAL
STACK WORKS

THE OVERHEAD IS HIGH

Hey, is it getting a
little tight in here?

vp
L4
=
_|
=
—
ad
O
L
VI
<
al

WHILE IN QUARKUS:
BUILD TIME BOOT

As much work as possible done at build time
Output: recorded wiring bytecode

Heap & state can be captured by the GraalVM
native-image compiler

WHILE IN QUARKUS

~XTENSIONS MODEL

Each framework/library needs an extension to
apply these benefits

Can physically avoid shipping some bootstrap-
preparation only code

Is Quarkus a meta-build tool?

EXTENSIONS MODEL

Can physically avoid shipping some code

JANDEX

High performance classpath scanner & indexer:
avoids any class initialization

ARC

CDI based dependency injection, at build time

GIZMO

Bytecode generation library, used by extensions to
generate all infrastructure

DESIGN CONSEQUENCES

Less classes are loaded

Can physically avoid shipping some bootstrap-
preparation only code

Overhead not repeated on each container boot
Far easier to get working in GraalVM native
images - and better optimised code!

Core + Extensions

)

Deploy (Build

Runtime

Weld Arc

Maven SmallRye Config

DEVELOPER'S JOY?

DEVELOPER JOY

WAL

30 YOU JUST SAVE 1T

AND YOUR CODE 15 RUNNING!
AND-IT'S JAVAY!

\ | KNOW, [lGHIT

SUPEISONIC JAVA, F TWI

DEVELOPER JOY

WAL

30 YOU JUST SAVE 1T

AND YOUR CODE 15 RUNNING!
AND IS JAVAY!

\ | KNOW, [lGHIT

SUPEISONIC JAVA, F TWI

Show me! Demo #2

QUARKUS EXTENSIONS

Required for frameworks that hit GraalVM
limitations

Opportunity to highly optimise also for JVM
Code strictly separates build time analysis and
runtime: extremely lean output!

W =
EX T

AT CAN AN

-NSION DO?Y

Invoke Quarkus helpers to dynamically

Interact with the GraalVM compiler needs
Generate "Bootstrap at build" initializers
Much much more... and evolving

5O, WHERE'S THE
CATCH?

NO PERFORMANCE
COMPROMISES

@
GraalVM.

AoT compilation with GraalVM
[Application J [JDK API J [SubstrateVM]
classes classes classes

v

Staticaly linked
executable

AoT compilation with GraalVM

Static analysis
Closed world assumption
Aggressive dead code elimination

GraalVM.
L IMITATIONS

OF GRAALVM NATIVE
IMAGES

GraalVM.
DYNAMIC CLASS ADIN G

T Srergy,,

Graal

DYNAMIC CLASSBOADING

s

Deloying jars, wars, etc. at runtime impossible

Graal

JVM T, M

+ other native VM interf?cgﬂ“ng.d

No agents
JRebel, Byteman, profilers, tracers, ...

No Java Debugger

GraalVM.
REFLECT\'%.j

Requires registration via native-image CLI/API

Graal
raa ium

MORE.

Need to register in advance also:

Dynamic proxies
Resources being loaded
JNI, Unsafe Memory Access, ...

Graal Vé’ry
STATIC INIT Pecia

Attempts to run them at build time

Resolve classes, run "safe" static initializers
Take a snapshot of the produced instances -
prune the unreachable ones

Include needed state in the executable

Graal Very
STATIC |NIT Pecia

not allowed: file handles, sockets, threads

careful with other state: timestamps, system
dependent constants, capturing environment

variables, etc..

HOW DO YOU DISABLE A
FEATURE ANYWAY?

HOW DO YOU DISABLE A
FEATURE ANYWAY?

HOW DO YOU DISABLE A
FEATURE ANYWAY?

jmxEnabled = parseConfiguration(...);

(jmxEnabled) {

registerdMX();
by

JMX ENABLED =

(JMX ENABLED) {
registerdMX();

}

THINK TWICE BEFORE
STARTING...

THINK TWICE BEFORE
STARTING.

All your dependencies need to get compiled too!

THINK TWICE BEFORE
STARTING.

All your dependencies need to get compiled too!
ALL REACHABLE CODE

THINK TWICE BEFORE
STARTING.

All your dependencies need to get compiled too!
ALL REACHABLE CODE
ALL DEPENDENCIES

HINK TWICE BEFORE
STARTING...

Might be wiser to contribute to an open
community of per-dependency extensions?

All Quarkus code is Apache License v.2

QUARKUS WRAP UP

Good old Java
More fun, less weight
Can go small as Go, works great on JVM too

Java suited for clouds and containers!

NATIVE IMAGE
PERFORMANCE

Slightly lower than JVM

Yet a winner in some conditions:

NATIVE IMAGE
PERFORMANCE

Slightly lower than JVM
Yet a winner in some conditions:

high memory density

NATIVE IMAGE
PERFORMANCE

Slightly lower than JVM
Yet a winner in some conditions:
high memory density

no warmup needed!

NATIVE IMAGE
PERFORMANCE

Slightly lower than JVM
Yet a winner in some conditions:
high memory density
no warmup needed!

instant elastic response / lambda support

NATIVE IMAGE
PERFORMANCE

Slightly lower than JVM
Yet a winner in some conditions:
high memory density
no warmup needed!
instant elastic response / lambda support

Bonus: you don't have to make a choice upfront.

THANK YOU!
Q&A

Docs & guides: quarkus.io

Chat: quarkusio.zulipchat.com

Quickstarts: github.com/quarkusio/quarkus-quick
Stack Overflow tag: quarkus

Twitter: @quarkusio

https://quarkus.io/
https://quarkusio.zulipchat.com/
https://github.com/quarkusio/quarkus-quickstarts
https://stackoverflow.com/questions/tagged/quarkus
https://twitter.com/quarkusio

