
Scaling for the 
Known Unknown

Suhail Patel



March 2016

1,861
Investors

£1,000,000
Raised

96
Seconds



March 2016



February 2017

41,267
Pledges to invest

£2,500,000
Raised



Late 2018

Monzo is raising £20,000,000 and all our 
customers will be eligible to participate



Hi, i’m Suhail

I’m a Platform Engineer at Monzo. I work on the 
Infrastructure and Reliability squad. We help build 
the base so other engineers can ship their 
services and applications.

● Email: hi@suhailpatel.com
● Twitter: @suhailpatel





Introduction

A brief overview of our Platform

Building a Crowdfunding Backend

Load testing + Finding bottlenecks



Number of services





Deployment Service
Please deploy 

service.account at 
revision b32a9e64

Review checks
Static analysis
Build checks



Running services

service.account



Running services

What we want from services:
● Self-contained
● Scalable
● Stateless
● Fault tolerance



Running services

service.account



Kubernetes Worker Node

Running services

Kubernetes Worker Node
Kubernetes Worker Node

Kubernetes Worker Node

service.transaction

service.account
10.0.10.123



Kubernetes Worker Node

Running services

Kubernetes Worker Node
Kubernetes Worker Node

Kubernetes Worker Node

Host: service.account
Proxy: 127.0.0.1:4140
HTTP GET /account

Route request to a 
service.account replica, let’s 
try the one at 10.0.10.123

service.transaction

service.account
10.0.10.123

Service Mesh

Service Mesh



Service Mesh

The Service Mesh ties the microservices together. 
It acts as the RPC proxy.

● Handles service discovery and routing
● Retries / Timeouts / Circuit Breaking
● Observability



Asynchronous messaging

service.transaction

service.transaction

service.transaction

Many things can occur asynchronously rather 
than a direct blocking RPC. 

Message queues like NSQ and Kafka provide 
asynchronous flows with at least once message 
delivery semantics.

service.transaction

service.txn-enrichment



Asynchronous messaging



Storing data with Cassandra

Please give me 
transaction id
txn_00000123456

service.transaction



Storing data with Cassandra

Cassandra Ring

Please give me 
transaction id
txn_00000123456

service.transaction
Replication Factor: 3

Quorum: Local



Storing data with Cassandra

Please give me 
transaction id
txn_00000123456

service.transaction
Replication Factor: 3

Quorum: Local



Storing data with Cassandra

Please give me 
transaction id
txn_00000123456

service.transaction
Replication Factor: 3

Quorum: One



Storing data with Cassandra

Please give me 
transaction id
txn_00000123456

service.transaction
Replication Factor: 3

Quorum: Local



Distributed Locking with etcd

Please can I get a 
lock on transaction 

txn_00000123456
so I have sole access

service.transaction



Distributed Locking with etcd

Source: https://raft.github.io/



Monitoring with Prometheus

Prometheus is a flexible time-series data store 
and query engine 

Each of our services expose metrics in 
Prometheus format at /metrics

Monitor all the things
● RPC Request/Response cycles
● CPU / Memory / Network use
● Asynchronous processing
● C* and Distributed Locking





Introduction

A brief overview of our Platform

Building a Crowdfunding Backend

Load testing + Finding bottlenecks



Requirements

1. Raise at most £20,000,000
We’d agreed with institutional 
investors leading the funding round 
that £20M was the cap

3. Handle lots of traffic
It was first-come-first-serve so we 
expected a lot of interest at the start 
of the crowdfunding round

2. Ensure users have enough money
Users should have the money they 
are pledging. We need to verify this 
before accepting the investment.

4. Don’t bring down the bank
All banking functions should 
continue to work whilst we’re running 
the crowdfunding



Requirements

1. Raise at most £20,000,000
We’d agreed with institutional 
investors leading the funding round 
that £20M was the cap

3. Handle lots of traffic
It was first-come-first-serve so we 
expected a lot of interest at the start 
of the crowdfunding round

2. Ensure users have enough money
Users should have the money they 
are pledging. We need to verify this 
before accepting the investment.

4. Don’t bring down the bank
All banking functions should 
continue to work whilst we’re running 
the crowdfunding



Counters / Transactions

What if we used as Cassandra counter?

“In Cassandra, at any given moment, the counter 
value may be stored in the Memtable, commit log, 
and/or one or more SSTables. Replication between 
nodes can cause consistency issues in certain edge 
cases”
Source: https://docs.datastax.com/en/cql/3.3/cql/cql_using/useCountersConcept.html

https://docs.datastax.com/en/cql/3.3/cql/cql_using/useCountersConcept.html


Edge Proxy service.crowdfunding-
pre-investment

service.crowdfunding-
investment

Ledger checks, 
confirm transaction

rate limited 
consumption



Requirements

1. Raise at most £20,000,000
We’d agreed with institutional 
investors leading the funding round 
that £20M was the cap

3. Handle lots of traffic
It was first-come-first-serve so we 
expected a lot of interest at the start 
of the crowdfunding round

2. Ensure users have enough money
Users should have the money they 
are pledging. We need to verify this 
before accepting the investment.

4. Don’t bring down the bank
All banking functions should 
continue to work whilst we’re running 
the crowdfunding





Introduction

A brief overview of our Platform

Building a Crowdfunding Backend

Load testing + Finding bottlenecks



Building our own load tester

There’s some great off-the-shelf solutions for load testing
● Bees with Machine Guns
● Locust
● ApacheBench (ab)
● Gatling



Building our own load tester

Load Test Worker

Load Test Worker

Load Test Worker

Load Test Worker

GET /account

GET /balance

GET /news

service.account

service.balance

service.news

Monzo Edge 
Proxy

AWS Load 
Balancer





At one point, we saw really high error rates in the load testing metrics. We didn’t 
see load test requests make it to our our AWS Load Balancer.

The load test nodes were using internal DNS provided by Amazon Route 53. We 
were constantly resolving *.monzo.com subdomains. 





Load testing in production

For our testing to create realistic load and give us useful results, we needed to test 
against our production systems – the real bank.



Load testing in production

We set up our load testing system as a third “app” alongside our iOS and Android 
apps, and we gave it read-only access to the data we needed to test. 

Target: Reach 1,000 app launches per second



Scaling services

Target: Reach 1,000 app launches per second





Scaling services

Target: Reach 1,000 app launches per second

replicas: 9
template:
  spec:
    containers:
      resources:
        limits:
          cpu: 30m
          memory: 40Mi
        requests:
          cpu: 10m
          memory: 20Mi



Scaling services

Target: Reach 1,000 app launches per second

replicas: 9
template:
  spec:
    containers:
      resources:
        limits:
          cpu: 100m
          memory: 40Mi
        requests:
          cpu: 50m
          memory: 20Mi



“But wait, you are re-inventing 
autoscaling, manually?”



We got to around 500-600 app launches before we found a major Platform 
bottleneck

Cassandra Bottlenecks



21 x i3.4xlarge EC2 machines 
● 16 cores
● 122GiB memory 
● 2 * 1.9TiB of NVMe disks

Each node holds about 500GB of data

The numbers





Our profiling identified three key areas
● Generating Prometheus metrics
● LZ4 Decompression
● CQL Statement Processing

Cassandra Bottlenecks





LZ4 Decompression





CQL Statement Parsing

We saw a significant amount of time being spent in parsing CQL statements.

The majority of our applications had a fixed model during the service pod lifetime 
so we would’ve been processing the same statement over and over again.



Prepared Statements

Cassandra supports prepared statements! Our gocql library which runs Cassandra 
queries was actively using them too for the majority of queries.



Prepared Statements

SELECT id, accountid, userid, amount, currency
FROM transaction.transaction_map_Id
WHERE id = ?

SELECT currency, accountid, userid, id, amount
FROM transaction.transaction_map_Id
WHERE id = ?



Target: Reach 1,000 app launches per second

At around 800 app launches per second, we saw our RPCs take a really long time 
across our Platform.

Service Mesh Bottlenecks





● A comprehensive spreadsheet of all the services involved and how much we’d 
need to scale them (replicas/resource requests/limits)

● An idea of how many EC2 Kubernetes Worker Nodes we need, so we could 
provision them before it started

● Much more knowledge of where things can fail at this scale
● Confidence!

○ Knowing what levers you can pull when things go wrong

What we ended up with



No matter how much preparation we did beforehand, we wanted to ensure we 
could recover the Platform if anything went wrong

● Feature Toggles
○ Gracefully degrading the less critical app features

● Shedding traffic
○ Stopping the traffic before it even enters our edge

Levers









Things went well

36,006
Investors

£20M
Raised

£6.8M
first 5 minutes 



What we learned

Here are the key takeaways and what we learnt as a result of this exercise
● Horizontal scaling has limits
● Treat software as just that, software
● Continuously load test



Thanks!

Email: hi@suhailpatel.com
Twitter: @suhailpatel / @monzo


