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Stopping a 
Phishing Attack



Hello Alex, I’m Tracy calling from Lyft 
HQ. This month we’re awarding $200 to 
all 4.7+ star drivers. Congratulations! 

Hey Tracy, thanks!

Np! And because we see that you’re in 
a ride, we’ll dispatch another driver so 
you can park at a safe location….

….Alright your passenger will be taken 
care of by another driver



Before we can credit you the award, we 
just need to quickly verify your identity.

We’ll now send you a verification text. 
Can you please tell us what those 
numbers are…...  

12345



Fingerprinting 
Fraudulent 
Behaviour



Request Ride

...

Driver Contact

Cancel Ride

…..

Something

Sequence of User Actions

Reference: Fingerprinting Fraudulent Behaviour

https://eng.lyft.com/fingerprinting-fraudulent-behavior-6663d0264fad


Reference: Fingerprinting Fraudulent Behaviour

Red Flag

Request Ride

...

Driver Contact

Cancel Ride

…..

Something

Sequence of User Actions

https://eng.lyft.com/fingerprinting-fraudulent-behavior-6663d0264fad


SELECT
user_id,
TOP(2056, action) OVER (
    PARTITION BY user_id
    ORDER BY event_time
    RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Temporally ordered user action sequence



SELECT
user_id,
TOP(2056, action) OVER (
    PARTITION BY user_id
    ORDER BY event_time
    RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Last x events sorted by time

Temporally ordered user action sequence



SELECT
user_id,
TOP(2056, action) OVER (
    PARTITION BY user_id
    ORDER BY event_time
    RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Historic context is also important 
(large lookback)

Temporally ordered user action sequence



SELECT
user_id,
TOP(2056, action) OVER (
    PARTITION BY user_id
    ORDER BY event_time
    RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Event time processing

Temporally ordered user action sequence



Make streaming 
features accessible for 
ML use cases





Flink



● Low latency stateful operations on streaming data - in the order or 

milliseconds

● Event time processing - replayability, correctness

● Exactly once processing

● Failure recovery

● SQL Api

Apache Flink



Event Ingestion Pipeline

HDFS

S3

Event Ingestion 
Pipeline

KinesisKinesisKinesisKinesis
Filters

(Offline/Batch)

(Streaming)

{
  “ride_req”,
  “user_id”: 123,
  “event_time”: t0
}



Credit: The Beam Model by Tyler Akidau and Frances Perry

Processing Time vs Event Time

Processing time

System time when the event is 
processed -> determined by processor

Event time

Logical time when the event occurred 
-> part of event metadata

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16
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Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16


Watermark

12:09 12:08 12:03 12:05 12:04 12:01 12:02

W = 12:05 W = 12:02W = 12:10



Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16


Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16


Usability



1 Model Development

3 Data Quality

5 Compute Resources

2Feature Engineering

4
Scheduling, Execution,

Data Collection

What Data Scientists care about



Data Input Data Prep Modeling Deployment

DATA DISCOVERY

NORMALIZE AND 
CLEAN UP DATA

EXTRACT & 
TRANSFORM 

FEATURES

LABEL DATA

MAINTAIN 
EXTERNAL 

FEATURE SETS

TRAIN MODELS

EVALUATE AND 
OPTIMIZE

DEPLOY

MONITOR & 
VISUALIZE 

PERFORMANCE

ML Workflow
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User Plane

Dryft UI

Data Plane

Kafka

DynamoDB

Druid

Hive

Control Plane

Query Analysis

Job Cluster

Data Discovery

Dryft! - Self Service Streaming Framework

Elastic Search



Declarative       Job Definition

{
  “retention”: {},
  “lookback”: {},
  “stream”: {
     “kinesis”: user_activities
  },
  “features”: {
     “user_activity_per_geohash”: {
        “type”: “int”
        “version”: 1,
        “description”: “user activities
               per geohash”
     }
  }
}

Job Config

SELECT
geohash,
COUNT(*) AS total_events,
TUMBLE_END(
  rowtime,
  INTERVAL ‘1’ hour
)

FROM event_user_action
GROUP BY
      TUMBLE(

rowtime,
INTERVAL ‘1’ hour

)

Flink SQL



Feature FanoutFeature Fanout

User Apps

Kinesis

Sources

Kinesis

S3

Kinesis

Sinks

DynamoDB

Hive



Eating our own 
dogfood 



SELECT
  -- this will be used in keyBy
  CONCAT_WS('_', feature_name, version, id),
  feature_data, 
  CONCAT_WS('_', feature_name, version)
       AS feature_definition,
  occurred_at
FROM features

         

Feature Fanout App - also uses Dryft

{
  “stream”: {
     “kinesis”: feature_stream
  },
  “sink”: {
     “feature_service_dynamodb”: {
        “write_rate”: 1000,
        “retry_count”: 5 
     }
  }
}



https://docs.google.com/file/d/14CMwiXQkkE1WxacZIHOJyMIkc4Rkz6Ya/preview


Deployment



Previously...

● Ran on AWS EC2 using custom deployment

● Separate autoscaling groups for JobManager and 

Taskmanagers

● Instance provisioning done during deployment

● Multiple jobs(60+) running on the same cluster



Multi tenancy hell!!



Kubernetes Based Deployment

Managing Flink on Kubernetes

TM TM TM

JM

TM TM TM

TM TM TM

JM

TM TM TM

TM

JM

App 1 App 2 App 3

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare


Flink-K8s-Operator

Managing Flink on Kubernetes

Custom
Resource
Descriptor

Flink Operator

TM TM TM

TM TM TM

JM

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare


Custom Resource Descriptor

apiVersion: flink.k8s.io/v1alpha
kind: FlinkApplication
metadata:
        name: flink-speeds-working-stats
        namespace: flink
spec:
        image: ‘100,dkr.ecr.us-east-1.amazonaws.com/abc:xyz’
        flinkJob:
            jarName: name.jar
            parallelism: 10
taskManagerConfig: {
   resources: {
       limits: {

memory: 15Gi,
cpu: 4

}
   },
   replicas: num_task_managers,
   taskSlots: NUM_SLOTS_PER_TASK_MANAGER,
   envConfig: {...},
}

● Custom resource 
represents Flink application

● Docker Image contains
all dependencies

● CRD modifications trigger 
update (includes 
parallelism and other Flink 
configuration properties)



Validate
Compute Resources

Generate CRD

Dryft Conf
---------
---------
---------

Flink 
Operator

TM TM TM

TM TM TM

JM

Kubernetes
CRD



Flink on Kubernetes

Managing Flink on Kubernetes - by Anand and Ketan

● Separate Flink cluster for each application

● Resource allocation customized per job - at job creation time

● Scales to 100s of Flink applications

● Automatic application updates

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare


Bootstrapping



SELECT
     passenger_id,
     COUNT(ride_id)
FROM event_ride_completed
GROUP BY
    passenger_id,
    HOP(rowtime,
        INTERVAL ‘30’ DAY,
        INTERVAL ‘1’ HOUR)
         

What is bootstrapping?



-6 -3 -4 -2-5-7 645321-1

Current Time
Historic Data Future Data

Read historic data to ‘bootstrap’ the program with 30 days worth of data. Now your program returns 
results on day 1. But what if the source does not have all 30 days worth of data?

Bootstrap with historic data



Read historic data from persistent store(AWS S3) and streaming data from Kafka/Kinesis

Solution - Consume from two sources

Bootstrapping state in Apache Flink - Hadoop Summit

      (historic)

    (real-time)

Business 

Logic
Sink

< Target Time

>= Target Time

https://www.slideshare.net/Hadoop_Summit/bootstrapping-state-in-apache-flink




Job starts



Bootstrapping 
over



Detect Bootstrap Completion
Job sends a signal to the control plane once watermark has progressed beyond a 
point where we no longer need historic data

“Update” Job with lower parallelism but same job graph
Control plane cancels job with savepoint and starts it again from savepoint but 
with a much lower parallelism

Start Job
With a higher parallelism for fast bootstrapping



Output volume spike during bootstrapping

Bootstrapping



Output volume spike during bootstrapping

● Features need to be fresh but eventually complete

● Smooth out data writes during bootstrap to match throughput

● Write features produced during bootstrapping separately

Low Priority 
Kinesis Stream

High Priority 
Kinesis Stream

bootstrap

steady state

Idempotent Sink



What about skew 
between historic 
and real-time data?



Skew

Watermark = 

Kinesis



Solution: Source synchronization

partition 1

partition 2

consumer

 

partition 3

partition 4

consumer 

 

global watermark

global watermark

global 
watermark

shared 
state

FLINK-10887, FLINK-10921, FLIP-27

https://issues.apache.org/jira/browse/FLINK-10887
https://issues.apache.org/jira/browse/FLINK-10921
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface


Now...



● 120+ features

● Features available in DynamoDB(real time point lookup), Hive(offline analysis), 

Druid(real time analysis) and more…

● Time to write, test and deploy a feature is < 1/2 day

● p99 latency <5 seconds

● Coming Up - Python Support!



Thank you!

Sherin Thomas
@doodlesmt

https://twitter.com/doodlesmt


Later  



Backfill

Real-time Scoring DataLive Data

Lorem 3Lorem 1 Training DataHistoric Data

● What if one implementation could provide the training time and scoring time feature values?
○ Batch processing mode to backfill historic values for training
○ Stream processing mode to generate values in real-time for model scoring

● Enable delivery of consistent features between training and scoring



● Green/Blue deploy - zero downtime deploys

● “Auto” scaling of Flink cluster and/or job parallelism

● Feature library


