
ML through Streaming at
QCON LONDON 2020

Sherin Thomas
@doodlesmt

https://twitter.com/doodlesmt

Stopping a
Phishing Attack

Hello Alex, I’m Tracy calling from Lyft
HQ. This month we’re awarding $200 to
all 4.7+ star drivers. Congratulations!

Hey Tracy, thanks!

Np! And because we see that you’re in
a ride, we’ll dispatch another driver so
you can park at a safe location….

….Alright your passenger will be taken
care of by another driver

Before we can credit you the award, we
just need to quickly verify your identity.

We’ll now send you a verification text.
Can you please tell us what those
numbers are…...

12345

Fingerprinting
Fraudulent
Behaviour

Request Ride

...

Driver Contact

Cancel Ride

…..

Something

Sequence of User Actions

Reference: Fingerprinting Fraudulent Behaviour

https://eng.lyft.com/fingerprinting-fraudulent-behavior-6663d0264fad

Reference: Fingerprinting Fraudulent Behaviour

Red Flag

Request Ride

...

Driver Contact

Cancel Ride

…..

Something

Sequence of User Actions

https://eng.lyft.com/fingerprinting-fraudulent-behavior-6663d0264fad

SELECT
user_id,
TOP(2056, action) OVER (
 PARTITION BY user_id
 ORDER BY event_time
 RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Temporally ordered user action sequence

SELECT
user_id,
TOP(2056, action) OVER (
 PARTITION BY user_id
 ORDER BY event_time
 RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Last x events sorted by time

Temporally ordered user action sequence

SELECT
user_id,
TOP(2056, action) OVER (
 PARTITION BY user_id
 ORDER BY event_time
 RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Historic context is also important
(large lookback)

Temporally ordered user action sequence

SELECT
user_id,
TOP(2056, action) OVER (
 PARTITION BY user_id
 ORDER BY event_time
 RANGE INTERVAL ‘90’ DAYS PRECEDING
) AS client_action_sequence

FROM event_user_action

Event time processing

Temporally ordered user action sequence

Make streaming
features accessible for
ML use cases

Flink

● Low latency stateful operations on streaming data - in the order or

milliseconds

● Event time processing - replayability, correctness

● Exactly once processing

● Failure recovery

● SQL Api

Apache Flink

Event Ingestion Pipeline

HDFS

S3

Event Ingestion
Pipeline

KinesisKinesisKinesisKinesis
Filters

(Offline/Batch)

(Streaming)

{
 “ride_req”,
 “user_id”: 123,
 “event_time”: t0
}

Credit: The Beam Model by Tyler Akidau and Frances Perry

Processing Time vs Event Time

Processing time

System time when the event is
processed -> determined by processor

Event time

Logical time when the event occurred
-> part of event metadata

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16

episode
IV

1977 1980 1983 1999 2002 2005 2015 2016 2018 2019

episode
V

episode
VI

episode
I

episode
II

episode
III

episode
vii

ROGUE
ONE
III.5

episode
viii

episode
IX

Event Time

Processing Time

Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16

Watermark

12:09 12:08 12:03 12:05 12:04 12:01 12:02

W = 12:05 W = 12:02W = 12:10

Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16

Example: integer sum over 2 min window

Credit: The Beam Model by Tyler Akidau and Frances Perry

https://docs.google.com/presentation/d/17eq17-4KYvF1-2sCOo0sSUdm6gj4h6sWLhLDUYOe1cU/edit#slide=id.g119cd57211_0_16

Usability

1 Model Development

3 Data Quality

5 Compute Resources

2Feature Engineering

4
Scheduling, Execution,

Data Collection

What Data Scientists care about

Data Input Data Prep Modeling Deployment

DATA DISCOVERY

NORMALIZE AND
CLEAN UP DATA

EXTRACT &
TRANSFORM

FEATURES

LABEL DATA

MAINTAIN
EXTERNAL

FEATURE SETS

TRAIN MODELS

EVALUATE AND
OPTIMIZE

DEPLOY

MONITOR &
VISUALIZE

PERFORMANCE

ML Workflow

Data Input Data Prep Modeling Deployment

DATA DISCOVERY

NORMALIZE AND
CLEAN UP DATA

EXTRACT &
TRANSFORM

FEATURES

LABEL DATA

MAINTAIN
EXTERNAL

FEATURE SETS

TRAIN MODELS

EVALUATE AND
OPTIMIZE

DEPLOY

MONITOR &
VISUALIZE

PERFORMANCE

ML Workflow

User Plane

Dryft UI

Data Plane

Kafka

DynamoDB

Druid

Hive

Control Plane

Query Analysis

Job Cluster

Data Discovery

Dryft! - Self Service Streaming Framework

Elastic Search

Declarative Job Definition

{
 “retention”: {},
 “lookback”: {},
 “stream”: {
 “kinesis”: user_activities
 },
 “features”: {
 “user_activity_per_geohash”: {
 “type”: “int”
 “version”: 1,
 “description”: “user activities
 per geohash”
 }
 }
}

Job Config

SELECT
geohash,
COUNT(*) AS total_events,
TUMBLE_END(
 rowtime,
 INTERVAL ‘1’ hour
)

FROM event_user_action
GROUP BY
 TUMBLE(

rowtime,
INTERVAL ‘1’ hour

)

Flink SQL

Feature FanoutFeature Fanout

User Apps

Kinesis

Sources

Kinesis

S3

Kinesis

Sinks

DynamoDB

Hive

Eating our own
dogfood

SELECT
 -- this will be used in keyBy
 CONCAT_WS('_', feature_name, version, id),
 feature_data,
 CONCAT_WS('_', feature_name, version)
 AS feature_definition,
 occurred_at
FROM features

Feature Fanout App - also uses Dryft

{
 “stream”: {
 “kinesis”: feature_stream
 },
 “sink”: {
 “feature_service_dynamodb”: {
 “write_rate”: 1000,
 “retry_count”: 5
 }
 }
}

https://docs.google.com/file/d/14CMwiXQkkE1WxacZIHOJyMIkc4Rkz6Ya/preview

Deployment

Previously...

● Ran on AWS EC2 using custom deployment

● Separate autoscaling groups for JobManager and

Taskmanagers

● Instance provisioning done during deployment

● Multiple jobs(60+) running on the same cluster

Multi tenancy hell!!

Kubernetes Based Deployment

Managing Flink on Kubernetes

TM TM TM

JM

TM TM TM

TM TM TM

JM

TM TM TM

TM

JM

App 1 App 2 App 3

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare

Flink-K8s-Operator

Managing Flink on Kubernetes

Custom
Resource
Descriptor

Flink Operator

TM TM TM

TM TM TM

JM

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare

Custom Resource Descriptor

apiVersion: flink.k8s.io/v1alpha
kind: FlinkApplication
metadata:
 name: flink-speeds-working-stats
 namespace: flink
spec:
 image: ‘100,dkr.ecr.us-east-1.amazonaws.com/abc:xyz’
 flinkJob:
 jarName: name.jar
 parallelism: 10
taskManagerConfig: {
 resources: {
 limits: {

memory: 15Gi,
cpu: 4

}
 },
 replicas: num_task_managers,
 taskSlots: NUM_SLOTS_PER_TASK_MANAGER,
 envConfig: {...},
}

● Custom resource
represents Flink application

● Docker Image contains
all dependencies

● CRD modifications trigger
update (includes
parallelism and other Flink
configuration properties)

Validate
Compute Resources

Generate CRD

Dryft Conf

Flink
Operator

TM TM TM

TM TM TM

JM

Kubernetes
CRD

Flink on Kubernetes

Managing Flink on Kubernetes - by Anand and Ketan

● Separate Flink cluster for each application

● Resource allocation customized per job - at job creation time

● Scales to 100s of Flink applications

● Automatic application updates

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare

Bootstrapping

SELECT
 passenger_id,
 COUNT(ride_id)
FROM event_ride_completed
GROUP BY
 passenger_id,
 HOP(rowtime,
 INTERVAL ‘30’ DAY,
 INTERVAL ‘1’ HOUR)

What is bootstrapping?

-6 -3 -4 -2-5-7 645321-1

Current Time
Historic Data Future Data

Read historic data to ‘bootstrap’ the program with 30 days worth of data. Now your program returns
results on day 1. But what if the source does not have all 30 days worth of data?

Bootstrap with historic data

Read historic data from persistent store(AWS S3) and streaming data from Kafka/Kinesis

Solution - Consume from two sources

Bootstrapping state in Apache Flink - Hadoop Summit

 (historic)

 (real-time)

Business

Logic
Sink

< Target Time

>= Target Time

https://www.slideshare.net/Hadoop_Summit/bootstrapping-state-in-apache-flink

Job starts

Bootstrapping
over

Detect Bootstrap Completion
Job sends a signal to the control plane once watermark has progressed beyond a
point where we no longer need historic data

“Update” Job with lower parallelism but same job graph
Control plane cancels job with savepoint and starts it again from savepoint but
with a much lower parallelism

Start Job
With a higher parallelism for fast bootstrapping

Output volume spike during bootstrapping

Bootstrapping

Output volume spike during bootstrapping

● Features need to be fresh but eventually complete

● Smooth out data writes during bootstrap to match throughput

● Write features produced during bootstrapping separately

Low Priority
Kinesis Stream

High Priority
Kinesis Stream

bootstrap

steady state

Idempotent Sink

What about skew
between historic
and real-time data?

Skew

Watermark =

Kinesis

Solution: Source synchronization

partition 1

partition 2

consumer

partition 3

partition 4

consumer

global watermark

global watermark

global
watermark

shared
state

FLINK-10887, FLINK-10921, FLIP-27

https://issues.apache.org/jira/browse/FLINK-10887
https://issues.apache.org/jira/browse/FLINK-10921
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

Now...

● 120+ features

● Features available in DynamoDB(real time point lookup), Hive(offline analysis),

Druid(real time analysis) and more…

● Time to write, test and deploy a feature is < 1/2 day

● p99 latency <5 seconds

● Coming Up - Python Support!

Thank you!

Sherin Thomas
@doodlesmt

https://twitter.com/doodlesmt

Later

Backfill

Real-time Scoring DataLive Data

Lorem 3Lorem 1 Training DataHistoric Data

● What if one implementation could provide the training time and scoring time feature values?
○ Batch processing mode to backfill historic values for training
○ Stream processing mode to generate values in real-time for model scoring

● Enable delivery of consistent features between training and scoring

● Green/Blue deploy - zero downtime deploys

● “Auto” scaling of Flink cluster and/or job parallelism

● Feature library

