———
- N-..‘- -t "
) -

[

—
s

et

\rg **
‘\‘A& *lod

/Oa o denced ‘)z{ o~

(=
Il Rty

coatdll
Lt ,‘_} At & A-or\. ¥

PR—

(

BRI e | A<

‘»»&'
ﬂ L

kioer

o '\l‘ " | T T
Uﬂ; rt)o\ o) J o

hib ‘
:.,\-,h‘»(mark 4+

"‘.'ful. \ VBC
|

Pony

Pony

| Quicklinks

New to Pony?
Learning Pony?
Existing User?
Looking to contribute?
Community

Blog

FAQ

Become a Supporter

FN L T S

Today’s examples at https://github.cem/sophialC/SimplePonyPrograms.git

ponylang/ponyc

Pony

Welcome! This is the website for

capabilities-secure, high-perform

Quicklinks

v

v

v

v

v

v

What is Pony?

Frequently asked questions

Try it in your browser

Example Pony applications

Get started learning Pony

Pony
ponylang/ponyc

Pony

| Quicklinks

New to Pony?
Learning Pony?
Existing User?
Looking to contribute?
Community

Blog

FAQ

Become a Supporter

ponylang / ponyc ¥Sponsor |~ ®OWatchv 157 % Star 41k YFork 352
F
<> Code Issues 256 Pull requests 19 Actions Security Insights
Branch: master v ponyc/ README.md Find file = Copy path
W A% maiha Fix dead link in README.md and Update LICENSE for date (#3456) a07f676 26 days ago

oo conviovors @ ¢ MAET * BDBWE T 5 B i b = O ® T > @AR T osoves

74 lines (52 sloc) 2.8 KB Raw Blame History [J o T

Pony

Pony is an open-source, object-oriented, actor-model, capabilities-secure, high-performance programming language.

v

Frequently asked questions

v

Try it in your browser

v

Example Pony applications

v
=1
2}
—+
=
)
=3
o
-]

v
@
D
—
(2]
—
Q
=
—
D
Q.
®
Q
=
=
-

(@]

o
o
=

<<

Playground at http:/playground.ponylang.org

Today’s examples at https://github.cem/sophialC/SimplePonyPrograms.git

http://playground.ponylang.org

Pony - Goals

e concurrent (and distributed) programming,
o efficient,

* ecasy to write correct code.

Pony - How

e concurrent (and distributed) programming,

e actors first

o cfficient,
e no locks

e sharing without copies

e easy to write correct code.

data race free,

deadlock - free,

safe object cycles,

figment of atomicity,

causality

efficient”

Time (microsec)

Time (microsec)

L e e

16 32 64

0-————.

4 8 16 32 64

Pony vs Erlang vs Java

(a) trees (b) trees’
Erlang C4 le8 Orca | Erlgng|

16 32 64 16 32 64 16 32 64 4 8 16 32 64

16 32 64 16 32 64 4 8 16 32 64 16 32 64

Time (microsec)

(d) mailbox

1e7 Orca ' Erllangl

Time (microsec)
NN
'
i

B mutator time B mutator overhead [concurrent gc [l stw gc

16 32 64

16 32 64

Time (microsec)

Time (microsec)

L e e

..................

0-————.

4

8

16 32 64

.................

.................

..................
......................

16 32 64

(

Pony vs Erlang vs Java

a) trees (b) trees’

Erlang C4 le8 Orca Erlang
2.0- - .
TR]SOOSOV SOOI O J
2 i |
= :
E
L= W1} o dhooocondbooononderaoaadhoononadhas
[P]
=
..l ..-__ I‘
16 32 64 16 32 64 16 32 64
(d) mailb«
le7 Orca . ' Erlang
P 90OV S IS —] o
7_ -
- S N PP 4
o
[F]
8 [y o Poaocoadbocenecelocecacabacaoaodbas J
L]
=
E P L 5hoooanadhocaccocfioccceaathonaanthon 4
L
E K B SRR LR TR PPy PR PPRPE PP PR -
i
2_ -
l T A .
———.——. .
16 32 64 16 32 64 4 8 16 32 64

B mutator time 0 mutator overhead

I concurrent gc WM stw gc

16 32 64

(8) m=m orcA-total
B ORCA-scan
30 " mmm ORCA-GC
[Erlang-total
- @ Erlang-copy
I C4-total

25

16 32 64

VS Akka vs CAF

Run, Actor, Run
Agere 2019

Towards Cross-Actor Language Benchmarking

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang
Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se

Sophia Drossopoulou Tobias Wrigstad

VS Akka vs CAF

Run, Actor, Run
Agere 2019

Towards Cross-Actor Language Benchmarking

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang
Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se
Sophia Drossopoulou Tobias Wrigstad

Trapezoidal Approximation
3000 T

2500 H
2000
1500 1
1000

\
500 ||

e
et ————

0 L) 1 - 1 |‘ i Ty m— T /\Ts_ — ‘(\'\'"‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
Cores

VS Akka vs CAF

Run, Actor, Run
Towards Cross-Actor Language Benchmarking Agere 2019

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang
Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se
Sophia Drossopoulou Tobias Wrigstad

Trapezoidal Approximation

3000 T 8
| ,
2500 N
6
2000
Cores
Sieve of Eratosthenes
1500 1000 T T T T T T T T T T T T T 5(
900 H 4
1000
800 |- b 4(
| 700 3!
500 ||
' 600 . 3(
500 2!
|
400 H b 2(
Il
300 H| 1
\
200 || 1 10
"\ —W—'—\/\vv\.w%-\'vv—-/\,ﬂ\/vv\-
100 |- 1T e T]]
0

Dadiv Cant

VS Akka vs CAF

Run, Actor, Run
Towards Cross-Actor Language Benchmarking Agere 2019

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang
Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se
Sophia Drossopoulou Tobias Wrigstad

Trapezoidal Approximation
3000 T

2500 i

2000
Cores

Sieve of Eratosthenes

1500 1000 ————m————r————r————7—— 5(
900 | 4
1000
800 [a
s00 1| 700 Parallel
600 3000
500
|
400 ‘i“ 2500 .
300 ||
‘
200 L
N 2000 [7
100
0

1500 H| 1

1000

500

0 ! ! L ! L ! ! ! ! ! ! L !
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

Cores

Pony VS Akka vs CAF

Run, Actor, Run

Towards Cross-Actor Language Benchmarking

Agere 2019

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang
Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se

Sophia Drossopoulou Tobias Wrigstad

Cores

Trapezoidal Approximation Concurrent Sorted Linked-List

3000 T T T T T T T T T T T T T 8 30000 T T T T T T T T T T T T T 16
7 AR AT AN A e AN 14
2500 25000 | 7 ! v .
|
6 | 12
|
2000 20000 |- | g
Cores |
| 10
|
Sieve of Eratosthenes |
1500 1000 e 5(15000 I 1 8
900 i # VAfVNJ\JkA/V\ﬂ/w¢rwAwNFbJVV/\fNVAW—ijﬁh
6
1000 | J
800 [4 10000
4
500 || 700 Parallel
\ 600 3000 T T T T T T T T T T T T 5000 |-) 2
500
o P S S S S S S Y
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
400 2500 N Cores
300
\
200 ||
N 2000 [7
100 |
o -—

1000

500

0 ! ! L ! L ! ! ! ! ! ! L !
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

Cores

Pony VS Akka vs CAF

Run, Actor, Run
Agere 2019

Towards Cross-Actor Language Benchmarking

Sebastian Blessing Kiko Fernandez-Reyes Albert Mingkun Yang

Imperial College London Uppsala University Uppsala University
United Kingdom Sweden Sweden
sebastian.blessing12@imperial.ac.uk kiko.fernandez@it.uu.se albert.yang@it.uu.se

Sophia Drossopoulou Tobias Wrigstad

Cores

Trapezoidal Approximation Concurrent Sorted Linked-List

3000 : ; r r 8 30000 T T T T T T T T T T T T T 16
7 AR AT AN A e AN 14
2500 25000 - ! v
|
6 | 12
[
2000 20000 |
Cores ‘>
_ | Concurrent Dictionary
Sieve of Eratosthenes | 5500
1500 1000 B 5(15000 |
5000
900 | 4
1000 WASAL 500 |
800 | @ 10000 |-
4000 H
s00 1| 700 Parallel
-\ i 3500 H
\ 800 3000 T T T T T T T T T T T T 5000
3000 H
0 500 ol— 2500 |
0 8 16
400 2500 1 2000 H
800 1| 1500 H
\
200 | 1000 |
~ o ~ 2000 [N
100 | \ 500 —— —F = — e]
\ /\’_/N
o 0 . .) . . \ .) . ! . .)
0 8 16 24 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
1500 [H | s Cores

1000

500

0 ! ! L ! L ! ! ! ! ! ! L !
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

Cores

3000

2500

2000

1500

1000

\
500 [|

Pony

VS Akka vs

Run, Actor, Run

CAF

Towards Cross-Actor Language Benchmarking

Sebastian Blessing
Imperial College London
United Kingdom

sebastian.blessing12@imperial.ac.uk

Trapezoidal Approximation

1000

900

800

700

600

500

400

300 H

200

100

Sophia Drossopoulou

Kiko Fernandez-Reyes
Uppsala University
Sweden
kiko.fernandez@it.uu.se

Albert Mingkun Yang
Uppsala University

Tobias Wrigstad

Sweden

albert.yang@it.uu.se

Cores

Concurrent Sorted Linked-List

8 30000
7
25000 |- r !
6 |
|
Cores 20000 —“\
Sieve of Eratosthenes "I
St 15000 [/
4
NAA—AS~
& 10000 |-
Parallel
3000 T T T T T T T T T T T T 5000 |-
0 L
0 8 16
2500 |
N 2000 | .
—
0 8 16 24 \
1500 .
1000
500
O | | | | | | | | | | | | |
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

Cores

5500

5000

4000

3500 H

3000 H

2500 H

2000 H

1500 H

1000 [

500 -

\ .
™\ r-f\.v/w N A~ M\{/\/\ A AN

Concurrent Dictionary

Agere 2019

Concurrency

8000 T T T T
7000 4
6000 [
5000 H
4000 [

3000 |-

2000 -

1000 [

T T T T T T T T

| | | | | | | |

16 24 32 40 48 56 64 72 80

88 96 104 112
Cores

Wallaroo Labs

‘I wanna go fast”

WALLAROO LABS

HELLO WALLAROO

Why we used Pony to write
Wallaroo

Hi there! Today, | want to talk to you about why we chose to write \Wallaroo,
our distributed data processing framework for building high-performance
streaming data applications, in Pony. It's a question that has come up with
some regular frequency from our more technically minded audiences.

Pony features

actors, objects

pass mutable state without copying
static types, type safe

no Null values

capabilities

checked exceptions

pattern marching

lambda-s and partial applications
causality

traits and interfaces
(nominal and structural types)

union and intersection types

generics ala f-bounded
polymorphism

consuming and destructive read
alias/unalias and viewpoints in types
C ffi

small library

logay's lalk

* Pony - the language and its design
* Actors
* Causality
* The Type System

* Garbage Collection

10

logay's lalk

* Pony - the language and its design
* Actors
* Causality
* The Type System

* Garbage Collection

11

logay's lalk

* Pony - the language and its design
- Actors
* Causality
* The Type System

* Garbage Collection

12

I'he actor paradigm in Pony

e actor ~ active object (state)

e actors send asynchronous messages to other
actors (behaviours)

* messages stored in queues; when scheduled,
actor executes first behaviour from its message
gueue

e actors send synchronous messages to objects, or
to themselves (functions)

13

Actors In Pony

Codein 1 Actors/ABC.pony
— 14

https://github.com/sophiaIC/SimplePonyPrograms.git

Actors In Pony

actor Act
let env : Env
let name : String

new create(e: Env, s: String) =>
env = e
name = s

be poke() =>
env.out.print(name)

Codein 1 Actors/ABC.pony
14

https://github.com/sophiaIC/SimplePonyPrograms.git

Actors In Pony

actor Act
let env : Env
let name : String

actor Main nv, s: String) =>

new create(env: Env) =>
let actl : Act = Act(env," A")
let act2 : Act = Act(env," B")
let act3 : Act = Act(env," C") 1t(name)

actl.poke()
act2.poke()
act3.poke()

Codein 1 Actors/ABC.pony
14

https://github.com/sophiaIC/SimplePonyPrograms.git

Main.create(...)

Main.run()

actor Act
let env : Env

actor Main .
let name : string

let env : Env
let actA : Act

new create(e:Env,s:String)=>

new create(e: Env) =>
un () be poke () => |
env.out.print (name)
be run() =>
actA.poke ()
actB.poke ()

actC.poke ()

16

Main.run()

poke()

Main.run()

env.out

poke()
poke()
poke()
printCA’)
print(‘B") |
print(C)

17

Main.run() -also poss

env.out

poke()

print(‘A’)

18

Main.run() -also poss

env.out

poke()

poke()

noke() print(‘A’)

19

Main.run() -also poss

env.out

poke()

print(‘A’)

20

logay's lalk

* Pony - the language and its design
* Actors
- Causality
* The Type System

* Garbage Collection

21

Uncertainty”?

===

(

Ndl

e

e

inl 1 1l

do
N W

N W

Uncertainty”?

the other actors do while | am executing?

the message be taken off the queue”

the message be delivered to the queue?

23

Uncertainty alleviated
through Types
and through Causal Message Delivery

24

Uncertainty alleviated
through Types

25

Uncertainty alleviated through types

o W
o W
o W

nal

e

e

] ey |

do
N W

N W

the other actors do while | am executing?

the message be taken off the queue?

the message be delivered to the queue?

- When message taken off the queue, any changes to
rest of world invisible to receiver.
~ Intact, this guarantee holds upon message send.

20

Uncertainty alleviated

and through Causal Message Delivery

27

C C

C

===

Ndl

e

e

HH

do
N Wil

N W

Uncertainty

gy 1

the other actors do while | am executing?

the message be taken off the queue”

the message be delivered to the queue?

28

Message Delivery

Code in 2_CausalDeliver¥9/MssgDelivery .pony

Message Delivery

actor Customer
let _store : Store
let _bank : Bank

be run() =>
let price : U8 =
_bank.credit(this,price)
_store.buy(this,price)

Code in 2_CausalDeliver¥9/MssgDelivery .pony

Message Delivery

actor Customer
let _store : Store
let _bank : Bank

be run() =>
let price : U8 =
_bank.credit(this,price)
_store.buy(this,price)

actor Store
let _bank : Bank

be buy(cust:Customer, price: U8) =>
_bank.debit(cust,price)

Code in 2_CausalDeliver;/9/MssgDelivery .pony

Message Delivery

actor Customer actor Bank
let store : Store let _balances : MapIs[Customer,U8] ref

let _bank : Bank
new create(env:Env) =>

be run() => _balances = MapIs[Customer,U8] ()

let price : U8 =
_bank.credit(this,price)
_store.buy(this,price)

actor Store
let _bank : Bank

be buy(cust:Customer, price: U8)
_bank.debit(cust,price)

Code in 2_CausalDeliver%/MssgDelivery.pony

Message Delivery

actor Customer actor Bank
let store : Store let _balances : MapIs[Customer,U8] ref

let _bank : Bank
new create(env:Env) =>

be run() => _balances = MapIs[Customer,U8] ()

let price : U8 =
_bank.credit(this,price)
_store.buy(this,price)

be credit(cust:Customer, amount: U8) =>
let b = _balances.get_or_else(cust,0)
_balances.update(cust,balance+amount)

actor Store
let _bank : Bank

be buy(cust:Customer, price: U8)
_bank.debit(cust,price)

Code in 2_CausalDeliver¥9/MssgDelivery .pony

Message Delivery

actor Customer actor Bank
let store : Store let _balances : MapIs[Customer,U8] ref

let _bank : Bank
new create(env:Env) =>

be run() => _balances = MapIs|[Customer,U8]()

let price : U8 =
_bank.credit(this,price)
_store.buy(this,price)

be credit(cust:Customer, amount: U8) =>
let b = _balances.get_or_else(cust,0)
_balances.update(cust,balance+amount)

be debit(cust:Customer, price: U8) =>
try
var balance = balances(cust)
let _bank : Bank if balance < price then

error

be buy(cust:Customer, price: U8) end
bank.debit(cust,price) _balances.update(cust,balance-price)

actor Store

end

Code in 2_CausalDeliver;/9/MssgDelivery .pony

Customer.run()

‘Customer

credit(..)

30

Customer.run() — can be?

‘Customer

Uncertainty alleviated through causality

nat do the other actors do while | am executing?
nen will the message be taken off the queue”?
nen will the message be delivered to the queue?

(

(

===

- Messages arrive at queues in causal order
- It | receive m, and then send m’, then m causes m

- |f | send m and then send m’, then m causes m’
o causality Is transitive

Customer.run() — can be?

‘Customer

debit(..

credit(..)

33

This scenario cannot happen, because:
: sends and then e causes
: recelves and sends e causes

Therefore causes

run(..)

debit(..

credit(..)

33

This scenario cannot happen, because:

; sends and then e causes
. recelves and sends e causes
Therefore causes
Therefore will be delivered before
run(..)
buyf(..) —
debit(..

credit(..)

33

Causality & distribution

Causality & distribution

Tree Topologies for Causal Message Delivery

Sebastian Blessing Sylvan Clebsch Sophia Drossopoulou
Department of Computing Microsoft Research Department of Computing
Imperial College London sylvan.clebsch@microsoft.com Imperial College London

sebastian.blessing12@imperial.ac.uk s.drossopoulou@imperial.ac.uk
CCS Concepts - Computer systems organization — In the context of causal messaging, we say that each mes-
Distributed architectures; « Theory of computation — sage is an effect and every message that was received or sent

Agere 2017

34

Causality & distribution

Causality & distribution

(2.2) "Buy”

(1.1) "Credit",»” N .
i v (3) "Debit”
|

(1) “Credit" /~
\

35

Uncertainty alleviated
through Types

logay's lalk

* Pony - the language and its design
* Actors
* Causality
- The Type System

* The Garbage Collector

37

Ihe type system

Ihe type system

Deny Capabilities for Safe, Fast Actors

Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, Andy McNeil
Causality Ltd., Imperial College London
{sylvan, sophia, sebastian, andy}@causality.io

stract Existing approaches to static data race freedom use ref-

nbining the actor-model with shared memorv for per- erence capabilities to describe what a reference is allowed

Agere 2015

38

Pony types retlect execution

> What may | do with my reference?

- What if | alias my reference”

> What if | un-alias my reterence”

> What it | read a field from my reterence?

> What it | extract a field from my reference?

39

Pony types retlect execution

> What may | do with my reference?

reference capabillities: k
> What it | alias my reterence?

> What if | un-alias my reterence”

> What it | read a field from my reterence?

> What it | extract a field from my reference?

39

Pony types retlect execution

> What may | do with my reference”
reference capabillities: k

> What it | alias my reterence?
allasing capabilities: k!

> What if | un-alias my reterence”

> What it | read a field from my reterence?

> What it | extract a field from my reference?

39

Pony types retlect execution

> What may | do with my reference”
reference capabillities: k

> What it | alias my reterence?

allasing capabilities: k!
> What it | un-alias my reference”

unaliasing capabilities: kA

> What it | read a field from my reterence?

> What it | extract a field from my reference?

39

Pony types retlect execution

> What may | do with my reference”
reference capabillities: k

> What it | alias my reterence?

allasing capabilities: k!
> What it | un-alias my reference”

unaliasing capabilities: kA
> What if | read a field from my reference?

viewpoint adaptation: K->k’

> What it | extract a field from my reference?

39

Pony types retlect execution

> What may | do with my reference”
reference capabillities: k

> What it | alias my reterence?

allasing capabilities: k!

> What if | un-alias my reterence”

unaliasing capabilities: kA
> What it | read a field from my reterence?

viewpoint adaptation: K->k’
> What it | extract a field from my reference?

39e><trac:ting adaptation: kA->k’

Pony types - 5 novel ingredients

reference capabilities: k

aliasing a capabillity: k!

consuming (unaliasing) capability: kA
viewpoint adaptation: kK =>k’

extracting adaptation: kK "=> kK’

40

Reference capabilities k

. attached to references (ie paths).

o express whether holder ot a reference to an object
'S allowed to read or write into the object

also express whether other aliases to the object
might read or write into the object

41

actor ThisActor
let otherActor: OtherActor

otherActor

this actor other actor

42

actor ThisActor
let otherActor: OtherActor
let holder: .. = new Account

otherActor

this actor other actor

- :Accnt

42

actor ThisActor
let otherActor: OtherActor
let holder: .. = new Account

fun ... =>
var localAlias = holder

otherActor

this actor

holde

Accnt

local alias

42

other actor

actor ThisActor
let otherActor: OtherActor
let holder: .. = new Account

fun .. =>

var localAlias = holder
otherAcror.take(holder)

otherActor

this actor

holde

@

local alias

42

other actor

-Accnt 4—

"global alias”

actor ThisActor

otherActor
other actor

this actor

holde

- :Acent
“global alias”

local alias

42

reference capabilities
(adapted from morning paper)
- and omitting trn -

43

reference capabilities
(adapted from morning paper)
- and omitting trn -

43

reference capabilities
(adapted from morning paper)
- and omitting trn -

holder may
Read, Write?

ISO RD, WR
"""""""" of RDWR
"""""""" @l A
""""""" pox RD
"""""""" wg | -

43

reference capabilities
(adapted from morning paper)
- and omitting trn -

holder may local alias

ISO RD, WR —
"""""""" o RDWR | RD.WR
"""""""" @ RO | RD
""""""" pox RD | RD.WR
"""""""" g | — | RD.WR

reference capabilities
(adapted from morning paper)
- and omitting trn -

holder may local alias | global alias |
Read, Write? ~ might might

ISO RD, WR — —
"""""""" o RDWR | RD.WR —
"""""""" w R | RO RD
""""""" ox RD | RDWR RD
"""""""" g - | RDWR RD,WR

reference capabilities
(adapted from morning paper)
- and omitting trn -

holder may local alias églobal alias holder may
Read, Write? . might = might = send?

iso RD, WR — —
"""""""" o ROWR | RD,WR -
"""""""" w RO | RO RO @
""""""" jox RD | RDLWR RO
"""""""" g = — | ROWR RDWR @

Reference capabilities k

o attached to references (ie paths, eg x, x.f, x.t.q).

o express whether holder of a reference to an object
IS allowed to read or write into the object

o also express whether other aliases to the object are
denied to read or write to the object

- The type of the receiver is part of function signature

fun ref eat(food: Food box) =>
this.strength = this.strength + food.take a bite()

44

capabillities - find the type errors!

Codein 4a EatingSequential/Eating.pony

45

capabillities - find the type errors!

class Person

let i1id: IdentityData val
var strength: U64

fun ref eat(food: Food box) =>
strength = strength +
food.take a bite()

Codein 4a EatingSequential/Eating.pony

45

capabillities - find the type errors!

class Person

let i1id: IdentityData val
var strength: U64

fun ref eat(food: Food box) =>
strength = strength +
food.take a bite()

class Food
var calories: U64

fun box take a bite():U64 =>
calories = calories/2
calories/3

Codein 4a EatingSequential/Eating.pony

45

capabillities - find the type errors!

class Person |
let id: IdentityData val actor Main
var strength: U64 let apple: Food ref

fun ref eat(food: Food box) => ReW create(env':Env) =>
strength = strength + apple = Food(apple”,>0)

: run()
food.take a bite()
be run() =>
let pear: Food ref = Food("pear",160)
class Food let laurie: Person ref =

Person("Laurie" ,400)
let jan: Person ref =

Person("Jan",300)

var calories: U64

fun box take_a_bite() :U64 => jan.eat(apple)
calories = calories/2 laurie.eat (pear)
calories/3 jan.eat(pear)

laurie.eat (apple)

Codein 4a EatingSequential/Eating.pony

45

capabillities - correct the type errors!

class Person

let id: IdentityData val actor Main
var strength: U64 let apple: Food ref

fun ref eat(food: Food box) => ReW create(env':Env) =>
strength = strength + apple = Food(apple”,>0)

: run()
food.take a bite()
be run() =>
let pear: Food ref = Food("pear",160)
class Food let laurie: Person ref =

Person("Laurie" ,400)
let jan: Person ref =

Person("Jan",300)
fun bOX take_a_bite():U64 => jan.eat(apple)
calories = calories/2 laurie.eat (pear)

calories/3 jan.eat(pear)
laurie.eat (apple)

var calories: U64

46

valid local aliases - find the type errors!

class Person

let id: IdentityData val actor Main
var strength: U64 let apple: Food ref

fun ref eat(food: Food box) => ReW create(env':Env) =>
strength = strength + apple = Food(apple”,>0)

: run()
food.take a bite()
be run() =>
let pear: Food ref = Food("pear",160)
class Food let laurie: Person ref =
var calories: U64 Person("Laurie"”,400)

let jan: Person ref =
Person("Jan",300)
fun ref take a bite():U64 => jan.eat (apple)

calories = calories/2 laurie.eat (pear)

calories/3 jan.eat (pear)
laurie.eat (apple)

47

valid local aliases - correct the type errors!

48

valid local aliases - correct the type errors!

class Person

let id: IdentityData val actor Main
var strength: U64 let apple: Food ref

fun ref eat(food: Food box) => new Create(env'iEnV) T>
strength = strength + apple = Food("apple",50)

: run()
food.take a bite()
be run() =>
let pear: Food ref = Food("pear",160)
class Food let laurie: Person ref =
var calories: U64 Person("Laurie",400)

let jan: Person ref =
Person("Jan",300)
fun ref take a bite():U64 => jan.eat (apple)

calories = calories/2 laurie.eat (pear)

calories/3 Jan.eat(pear)
laurie.eat (apple)

48

valid local aliases - type errors corrected

class Person
let i1d: IdentityData val

t Mai
var strength: U64 actor Main

let apple: Food ref

fun ref eat(food: Food ref) =>

new create(env':Env) =>
strength = strength +

apple = Food("apple",50)

food.take a bite() run()
be run() =>
class Food let pear: Food ref = Food("pear",160)

let laurie: Person ref =
U64 " . "
Person(Laurie”,400)
let jan: Person ref =

var calories:

fun ref take a bite(): U64 => Person("Jan",300)
calories = calories/2 Jan.eat(apple)
calories/3 laurie.eat (pear)

jan.eat (pear)
laurie.eat(apple)

49

Capabilities and Object Heap (excl. tag)

Capabilities and Object Heap (excl. tag)

© 1s0: disjoint,
mutable regions

Capabilities and Object Heap (excl. tag)

© 1s0: disjoint,
mutable regions

o one
immutable region

Capabilities and Object Heap (excl. tag)

© 1s0: disjoint,
mutable regions

o one
immutable region

- cycles possible
(cf Rust)

Capabilities and Object Heap (excl. tag)

© 1s0: disjoint,
mutable regions

box ISQ - one
: immutable region
iso | ' |~ cycles possible

val | (cf Rust)
ref

val

© Nno incoming reference:
iInto mutable regions

ISO

Capabilities and Object Heap (excl. tag)

© 1s0: disjoint,
mutable regions

o one
immutable region

~ cycles possible
(cf Rust)

© Nno incoming reference:
iInto mutable regions

Capabilities and Object Heap (excl. tag)

<7

A

Iso: disjoint,
mutable regions

one
immutable region

cycles possible
(cf Rust)

NO Incoming references
iInto mutable regions

at most one actor
at a time has access
to mutable region

Capabilities and Object Heap (excl. tag)

A

iIso: disjoint,
mutable regions

ref

val
f/\.l

data race free by construction

ETE:

NnNeE

< U)’UIUO PUOOlUIU

(cf Rust)

© Nno incoming references
iInto mutable regions

- at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

- val-reference may
be sent to other actor

Capabilities and Safe Communication

A2
val | . atmost one actor
val at a time has access
to mutable region
‘ box ISO
< ' - val-reference may
iso : be sent to other actor

val

bo ref ref

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

- val-reference may
be sent to other actor

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

- val-reference may
be sent to other actor

© Iso:-reference may
be given up, anad
sent to other actor

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

- val-reference may
be sent to other actor

© Iso:-reference may
be given up, anad
sent to other actor

Capabilities and Safe Communication

val

- at most one actor
at a time has access
to mutable region

- val-reference may
be sent to other actor

ref

© Iso:-reference may
be given up, anad
sent to other actor

Capabilities and Safe Communication

- at most one actor
at a time has access
to mutable region

share mutable state without copying

p 1SO W<
val
ref

De sent 10 other actor

© Iso:-reference may
be given up, anad
sent to other actor

*_ bys ref

| iso

Guarantees
of the type system

(Guarantees

(Guarantees

e No data-races At most one actor at a time has access to
a mutable region.

53

(Guarantees

e No data-races At most one actor at a time has access to
a mutable region.

 Immutability is deep and permanent Everything that is
in the Immutable region remains immutable from now on

53

Guarantees - 2

o Capabilities weaker with distance |f path p.f has
capability k, then p has same or “stronger” capabillity.

 Figment of atomicity If configuration C” arises from C
without message receipts at actor o, and it
o SeEes 0 at non-tag capability at C’, and
the contents of o at C different from contents at C’,

then
either a created o, or a caused the change.

54

the figment of atomicity

interleaved semantics

al a’ asl

the figment of atomicity

Interleaved semantics how programmers think

al a’ asl

al a2 asl

—

logay's lalk

* Pony - the language and its design
* Actors
* Causality
* The Type System

- Garbage Collection

S/

Blocking

The cause of many high-

variance slowdowns
> More cores

more slowdowns and more variance
* Blocking Garbage Collection accentuates impact
* Reducing blocking

* Help perform Prerequisite action rather

than waiting fol
*+ Use finer-

grained sync to decrease likelihood of blocki
* Use finer-grained actions, transforming ...

From: Block existing actions until they can continue
To: Trigger new actions when they are enabled

+ Seen at instruction, data structure, task, 10 leve

* Lead to new JVM, language, library challenges
» Memory models, non-blocking algorithms, 10 APIs

NLLp://gee.cs.oswego, equ

b

ORCA:
Ownership and
Reference Counting

Soundness of a Concurrent Collector for Actors

Juliana Franco! Sylvan Clebsch? ;
Sophia Drossopoulou! Jan Vitek® Tobias Wrigstad* ES O P 1 8
! Imperial College, London ? Microsoft Research Cambridge
3 Northeastern University & CVUT * Uppsala University, Uppsala

Abstract ORCA is a garbage collection protocol for actor-based pro-

cvarmao NMualtinla antAare maxr muitata tha haan wrhila +ha ~rallantAr 30 viin

Orca: GC and Type System Co-Design for Actor Languages

SYLVAN CLEBSCH, Microsoft Research Cambridge, United Kingdom
JULIANA FRANCO, Imperial College London, United Kingdom

O O P S I_A, 1 7 SOPHIA DROSSOPOULQOU, Imperial College London, United Kingdom
ALBERT MINGKUN YANG, Uppsala University, Sweden
TOBIAS WRIGSTAD, Uppsala University, Sweden
JAN VITEK, Northeastern University, United States of America

Orca is a concurrent and parallel garbage collector for actor programs, which does not require any stop-the-
world steps, or synchronisation mechanisms, and which has been designed to support zero-copy message
passing and sharing of mutable data. Orca is part of the runtime of the actor-based language Pony. Pony’s
runtime was co-designed with the Pony language. This co-design allowed us to exploit certain language

Fully Concurrent Garbage Collection
of Actors on Many-Core Machines OOPS|LA'13

Sylvan Clebsch and Sophia Drossopoulou
Department of Computing, Imperial College, London

60

1l WHE B

Pony Garbage Collection
'S fully concurrent

le no synchronization, lo locks, no barrier, no stop the world step.

GC

behaviour

idle

Cores 1-4

IS fully concurrent
le N0 synchronization, lo locks, no barrier, no stop the world step.

WEp il Tl . ‘ ‘” ||
O | - I

T NI N .
NN BN NAN | NN NNR BRR BUUBN BRy m “”H“M
__

|

- 1l DAL O (1 N 1
el JANE AR [N TN NEE O NAN OBEE AR OMNR
il _NAE BER B NN O BER O BEE O RN O BER O aNR MR
-0 Hiii 1 Il

Behavior B Send B Receive mm GC

GC & Concurrency
Challenges

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

Challenge_3: How does the “owner” know whether there are foreign

references to its owned objects?
) use Deferred Reference Counts

and Messaging Mechanism

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

Challenge_3: How does the “owner” know whether there are foreign

referen its own | ?
eferences 1o its owned objects use Deferred Reference Counts

and Messaging Mechanism

Challenge_4: How deal with uncertainty in message delivery

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

Challenge_3: How does the “owner” know whether there are foreign

referen its own | ?
eferences 1o its owned objects use Deferred Reference Counts

and Messaging Mechanism

Challenge_4: How deal with uncertainty in message delivery
rely on Causal Message Delivery

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

The allocating actor (owner)

Challenge_2: How avoid data races between GC and mutators?
Type System

Challenge_3: How does the “owner” know whether there are foreign

referen its own | ?
eferences 1o its owned objects use Deferred Reference Counts

and Messaging Mechanism

Challenge_4: How deal with uncertainty in message delivery
rely on Causal Message Delivery

Tight Connection between Language and Runtime Design

64

Challenges

64

Challenges

- Owning actor might not have path to its live objects
- Cycles in object graph

64

Approach

- Owning actor keeps upper bound on number of actors which have a
path to owned object

- Owning actor collects object when this number=0

- Foreign actor keeps count of references to un-owned objects

- Foreign actor informs owning actor when number of references to
unowned objects changes (ie upon message send/receive or local
tracing) 65

Properties: Soundness and Completeness

ww

Approach

- Owning actor keeps upper bound on number of actors which have a
path to owned object

- Owning actor collects object when this number=0

- Foreign actor keeps count of references to un-owned objects

- Foreign actor informs owning actor when number of references to
unowned objects changes (ie upon message send/receive or local
tracing) 65

Time (microsec)

Time (microsec)

L e e

16 32 64

0-————.

4 8 16 32 64

Ponv vs Erlang vs Java

(a) trees (b) trees’
Erlang C4 le8 Orca | Erlgng|

16 32 64 16 32 64 16 32 64 4 8 16 32 64

16 32 64 16 32 64 4 8 16 32 64 16 32 64

Time (microsec)

(d) mailbox

1e7 Orca ' Erllangl

Time (microsec)
NN
'
i

B mutator time B mutator overhead [concurrent gc [l stw gc

16 32 64

16 32 64

Time (microsec)

Time (microsec)

L e e

..................

16 32 64

.................
.................
.............................
......................

0-————.

4 8 16 32 64

Ponv vs Erlang vs Java

(a) trees

16 32 64

16 32 64

B mutator time

Time (microsec)

16 32 64

Time (microsec)

0 mutator overhead

16 32 64

le8 Orca
! 1 l]]
2.0- -
1.5._ -
1 .0 e e ettt iele d|

16 32 64

5-..% beeeeees , _.

0 ———.——.

4 8 16 32 64

[concurrent gc

(b) trees’
| Erlgng|

(8) = oRrca-total
B ORCA-scan
30 ” mmm ORCA-GC
=3 Erlang-total
- [Erlang-copy -
I C4-total

25

4 8 16

e

(d) mailb

Erllan;

16 32 64

16 32 64

B stw gc

Responsiveness

Orca Erlang C4

0.10 -
0.08 -
0.06 -
0.04 -

0.02 -

Pony features

actors, objects

pass mutable state without copying
static types, type safe

no Null values

capabilities

checked exceptions

pattern marching

lambda-s and partial applications
causality

68

traits and interfaces
(nominal and structural types)

union and intersection types

generics ala f-bounded
polymorphism

consuming and destructive read
alias/unalias and viewpoints in types
C ffi

small library

o A es ¢
O . .J‘\'uol&‘{ : p AT ane O
\ f"“d ALY =
£ o~
C'v o & 5\1‘&‘ ? h E MA"L \)l',‘\;(
: attof
e N L
oditad e = :
0N
\ \ oty
-5 2 "““\..L\'— ladn P
(\”] ‘ ﬁn'u-\ A (¢ s O
.-U.ulb 4 : . =
= At & ‘-Of\- ¥ ‘," lec?
SRR et) e e
A
\“~. \’M._ﬂ *’M el
. ul. |
\‘A Acoct

- ynre -f’;“o k |\‘¢«. \ ; j\l 4,~'0./\
/ ‘\ (3

hib
;u\'a**"‘

T 1 DEC

A\rk 4-‘
"‘.'ful. \ VBC
|

—
sy

T—
—

oadill
— -
Perte
L] .

—
i —re

—

