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Pony - Goals

• concurrent (and distributed) programming, 

• efficient, 

• easy to write correct code.
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Pony - How
• concurrent (and distributed) programming, 

• actors first 

• efficient, 
• no locks  
• sharing without copies 

• easy to write correct code. 
• data race free,   

• deadlock - free,   

• safe object cycles, 
• figment of atomicity,  

• causality
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Pony features
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actors, objects
pass mutable state without copying
static types, type safe
no Null values 
capabilities
checked exceptions 
pattern marching 
lambda-s and partial applications 
causality

traits and interfaces  
(nominal and structural types) 
union and intersection types 
generics ala f-bounded 
polymorphism
consuming and destructive read
alias/unalias and viewpoints in types
C ffi 
small library
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The actor paradigm in Pony
• actor ~ active object (state) 

• actors send asynchronous messages to other 
actors (behaviours) 

• messages stored in queues; when scheduled, 
actor executes first behaviour from its message 
queue 

• actors send synchronous messages to objects, or 
to themselves (functions)   
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Actors in Pony
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Main

A

B

C

Main.create(…)

create()

create()

create()



Main.run()

actor Main 
  let env  : Env 
  let actA : Act 
  … 
 
  new create(e: Env) => 
    … 
    run() 

  be run() =>  
        actA.poke()  
        actB.poke() 
        actC.poke ()    
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actor Act 
  let env  : Env 
  let name : string 

  new create(e:Env,s:String)=> 
        … 

  be poke() => 
      env.out.print(name) 



Main.run() 
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Main.run() 
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A B CMain

poke()

poke()

poke()

env.out

print(‘A’)

print(‘B’)

print(‘C’)
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Today’s Talk

• Pony - the language and its design 
• Actors 

• Causality

• The Type System 

• Garbage Collection
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What do the other actors do while I am executing? 
When will the message be taken off the queue? 
When will the message be delivered to the queue?



Uncertainty alleviated 
 through Types  

and through Causal Message Delivery
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What do the other actors do while I am executing? 
When will the message be taken off the queue? 
When will the message be delivered to the queue?

When message taken off the queue, any changes to 
rest of world invisible to receiver. 
In fact, this guarantee holds upon message send.



Uncertainty alleviated 
 through Types  

and through Causal Message Delivery
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Uncertainty
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What do the other actors do while I am executing? 
When will the message be taken off the queue? 
When will the message be delivered to the queue?



Message Delivery
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Customer.run()

30

:Customer :Shop :Bank

buy(..)
credit(..)

debit(..)

run(..)



Customer.run() — can be?
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:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)
run(..)



Uncertainty alleviated through causality
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What do the other actors do while I am executing? 
When will the message be taken off the queue? 
When will the message be delivered to the queue?

Messages arrive at queues in causal order 
If I receive m, and then send m’, then m causes m’ 
If I send m and then send m’, then m causes m’ 
causality is transitive



Customer.run() — can be?
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33

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)

run(..)

This scenario cannot happen, because: 
  * Customer sends credit and then buy; ie credit causes buy,   
  * Shop receives  buy and sends debit; ie buy causes debit, 
 Therefore credit causes debit. 



Customer.run() — can be?

33

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)

run(..)

This scenario cannot happen, because: 
  * Customer sends credit and then buy; ie credit causes buy,   
  * Shop receives  buy and sends debit; ie buy causes debit, 
 Therefore credit causes debit. 

Therefore credit will be delivered before debit 
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Uncertainty alleviated 
through Types
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Today’s Talk

• Pony - the language and its design 
• Actors 

• Causality 

• The Type System

• The Garbage Collector
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Pony types  reflect execution

What may I do with my reference? 

What if I alias my reference? 

What if I un-alias my reference? 

What if I read a field from my reference? 

What if I extract a field from my reference?

reference capabilities:  κ

aliasing capabilities:  κ!

viewpoint adaptation:  κ->κ’

unaliasing capabilities:  κ^

extracting adaptation:  κ^->κ’
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Pony types - 5 novel ingredients

reference capabilities:  κ

aliasing a capability: κ!  

consuming (unaliasing) capability: κ^ 

viewpoint adaptation:  κ -> κ’ 

extracting adaptation:  κ ^-> κ’ 



Reference capabilities  κ

attached to references (ie paths). 

express whether holder of a reference to an object 
is allowed to read or write into the object 

also express whether other aliases to the object 
might read or write into the object

41
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other actor

actor ThisActor  
  let otherActor: OtherActor  
 
 

otherActor
this actor
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:Accnt

holder

other actor

actor ThisActor  
  let otherActor: OtherActor  
 
 

otherActor
this actor

 
  let holder: … = new Account  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:Accnt

holder

local alias

other actor

actor ThisActor  
  let otherActor: OtherActor  
 
  
   fun … =>  
      var localAlias = holder  
   

otherActor
this actor

 
  let holder: … = new Account  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:Accnt

holder

local alias

other actor

“global alias”

 
  otherAcror.take(holder)

actor ThisActor  
  let otherActor: OtherActor  
 
  
   fun … =>  
      var localAlias = holder  
   

otherActor
this actor

 
  let holder: … = new Account  
   Holder’s capability has to be compatible with 

possible actions of the local alias, 
possible actions of the global alias
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reference capabilities 
(adapted from morning paper) 

- and omitting trn - 

43

iso

ref

val

box

tag

holder may 
Read, Write?

RD, WR

RD, WR

RD 

RD

—

local alias 
might

—

RD, WR

RD 

RD, WR

RD, WR

global alias 
might

—

—

RD 

RD

RD, WR

holder may
send?

✅

 

✅
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Reference capabilities  κ

attached to references (ie paths, eg x, x.f, x.f.g). 

express whether holder of a reference to an object 
is allowed to read or write into the object 

also express whether other aliases to the object are 
denied to read or write to the object

44

The type of the receiver is part of function signature  

fun ref eat(food: Food box) =>  
    this.strength = this.strength + food.take_a_bite()  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valid local aliases - type errors corrected
class Person  
  let id: IdentityData val  
  var strength: U64  
  
  fun ref eat(food: Food ref) =>  
    strength = strength +  
            food.take_a_bite()  
 

class Food  
  var calories: U64  
  
  fun ref take_a_bite( ): U64 =>  
    calories = calories/2  
    calories/3  

actor Main  
  let apple: Food ref

  new create(env':Env) =>  
    apple = Food("apple",50)  
    run()  
 
  be run( )  =>  
    let pear: Food ref = Food("pear",160)  
    let laurie: Person ref =  
                 Person("Laurie",400)  
    let jan: Person ref =  
                 Person("Jan",300)  
    jan.eat(apple)  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Guarantees

• No data-races At most one actor at a time has access to 
a mutable region. 
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Guarantees

• No data-races At most one actor at a time has access to 
a mutable region. 
 

       

• Immutability is deep and permanent Everything that is 
in the immutable region remains immutable from now on 
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Guarantees - 2
• Capabilities weaker with distance If path p.f  has 

capability κ, then p has same or “stronger” capability. 

• Figment of atomicity If configuration C’’  arises from C  
without message receipts at actor α, and if  
α sees o at non-tag capability at C’’, and 
the contents of o at C different from contents at C’,   
then  
either α created o, or α  caused the change.   

    
•  
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Today’s Talk

• Pony - the language and its design 
• Actors 

• Causality 

• The Type System 

• Garbage Collection
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ORCA:  
Ownership and  

Reference Counting based  
Garbage Collection in the  

Actor World
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Pony Garbage Collection 
is fully concurrent 

ie no synchronization, lo locks, no barrier, no stop the world step.
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GC & Concurrency 
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign 
references to its owned objects?

Challenge_4: How deal with uncertainty in message delivery

The allocating actor (owner)

Type System

use Deferred Reference Counts 
and Messaging Mechanism

rely on Causal Message Delivery

Tight Connection between Language and Runtime Design and Runtime
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Challenges

Owning actor might not have path to its live objects 
Cycles in object graph  
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Approach
Owning actor keeps upper bound on number of actors which have a 
path to owned object 
Owning actor collects object when this number=0 
Foreign actor keeps count of references to un-owned objects 
Foreign actor informs owning actor when number of references to 
unowned objects changes (ie upon message send/receive or local 
tracing)
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Approach
Owning actor keeps upper bound on number of actors which have a 
path to owned object 
Owning actor collects object when this number=0 
Foreign actor keeps count of references to un-owned objects 
Foreign actor informs owning actor when number of references to 
unowned objects changes (ie upon message send/receive or local 
tracing)

Properties: Soundness and Completeness
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Responsiveness



Pony features
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actors, objects
pass mutable state without copying
static types, type safe
no Null values 
capabilities
checked exceptions 
pattern marching 
lambda-s and partial applications 
causality

traits and interfaces  
(nominal and structural types) 
union and intersection types 
generics ala f-bounded 
polymorphism
consuming and destructive read
alias/unalias and viewpoints in types
C ffi 
small library
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