
1

1

2Today’s examples at https://github.com/sophiaIC/SimplePonyPrograms.git

Playground at http://playground.ponylang.org
2Today’s examples at https://github.com/sophiaIC/SimplePonyPrograms.git

http://playground.ponylang.org

Pony - Goals

• concurrent (and distributed) programming,

• efficient,

• easy to write correct code.

3

Pony - How
• concurrent (and distributed) programming,

• actors first

• efficient,
• no locks
• sharing without copies

• easy to write correct code.
• data race free,

• deadlock - free,

• safe object cycles,
• figment of atomicity,

• causality

4

efficient?

5

Pony vs Erlang vs Java

Pony vs Erlang vs Java

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony Akka CAF

Agere 2019

vsvs

Pony features

9

actors, objects
pass mutable state without copying
static types, type safe
no Null values
capabilities
checked exceptions
pattern marching
lambda-s and partial applications
causality

traits and interfaces
(nominal and structural types)
union and intersection types
generics ala f-bounded
polymorphism
consuming and destructive read
alias/unalias and viewpoints in types
C ffi
small library

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• Garbage Collection

10

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• Garbage Collection

11

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• Garbage Collection

12

The actor paradigm in Pony
• actor ~ active object (state)

• actors send asynchronous messages to other
actors (behaviours)

• messages stored in queues; when scheduled,
actor executes first behaviour from its message
queue

• actors send synchronous messages to objects, or
to themselves (functions)

13

Actors in Pony

14
 Code in 1_Actors/ABC.pony

https://github.com/sophiaIC/SimplePonyPrograms.git

Actors in Pony

14
 Code in 1_Actors/ABC.pony

https://github.com/sophiaIC/SimplePonyPrograms.git

Actors in Pony

14
 Code in 1_Actors/ABC.pony

https://github.com/sophiaIC/SimplePonyPrograms.git

15

Main

A

B

C

Main.create(…)

create()

create()

create()

Main.run()

actor Main
 let env : Env
 let actA : Act
 …

 new create(e: Env) =>
 …
 run()

 be run() =>
 actA.poke()
 actB.poke()
 actC.poke ()

16

actor Act
 let env : Env
 let name : string

 new create(e:Env,s:String)=>
 …

 be poke() =>
 env.out.print(name)

Main.run()

17

A B CMain

poke()

poke()

poke()

Main.run()

17

A B CMain

poke()

poke()

poke()

env.out

print(‘A’)

print(‘B’)

print(‘C’)

Main.run() -also poss

18

A B CMain

poke()

poke()

poke()

env.out

print(‘A’)

print(‘B’)

print(‘C’)

Main.run() -also poss

19

A B CMain

poke()

poke()

poke()

env.out

print(‘A’)

print(‘B’)

print(‘C’)

Main.run() -also poss

20

A B CMain

poke()

poke()

poke()

env.out

print(‘A’)

print(‘B’)

print(‘C’)

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• Garbage Collection

21

Uncertainty?

22

Uncertainty?

23

What do the other actors do while I am executing?
When will the message be taken off the queue?
When will the message be delivered to the queue?

Uncertainty alleviated
 through Types

and through Causal Message Delivery

24

Uncertainty alleviated
 through Types

and through Causal Message Delivery

25

Uncertainty alleviated through types

26

What do the other actors do while I am executing?
When will the message be taken off the queue?
When will the message be delivered to the queue?

When message taken off the queue, any changes to
rest of world invisible to receiver.
In fact, this guarantee holds upon message send.

Uncertainty alleviated
 through Types

and through Causal Message Delivery

27

Uncertainty

28

What do the other actors do while I am executing?
When will the message be taken off the queue?
When will the message be delivered to the queue?

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Message Delivery

29
Code in 2_CausalDelivery/MssgDelivery.pony

Customer.run()

30

:Customer :Shop :Bank

buy(..)
credit(..)

debit(..)

run(..)

Customer.run() — can be?

31

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)
run(..)

Uncertainty alleviated through causality

32

What do the other actors do while I am executing?
When will the message be taken off the queue?
When will the message be delivered to the queue?

Messages arrive at queues in causal order
If I receive m, and then send m’, then m causes m’
If I send m and then send m’, then m causes m’
causality is transitive

Customer.run() — can be?

33

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)

run(..)

Customer.run() — can be?

33

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)

run(..)

This scenario cannot happen, because:
 * Customer sends credit and then buy; ie credit causes buy,
 * Shop receives buy and sends debit; ie buy causes debit,
 Therefore credit causes debit.

Customer.run() — can be?

33

:Customer :Shop :Bank

buy(..)

credit(..)

debit(..)

run(..)

This scenario cannot happen, because:
 * Customer sends credit and then buy; ie credit causes buy,
 * Shop receives buy and sends debit; ie buy causes debit,
 Therefore credit causes debit.

Therefore credit will be delivered before debit

34

Causality & distribution

34

Agere 2017

Causality & distribution

Causality & distribution

35

Causality & distribution

35

Uncertainty alleviated
through Types

36

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• The Garbage Collector

37

 The type system

38

 The type system

38

Agere 2015

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

reference capabilities: κ

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

reference capabilities: κ

aliasing capabilities: κ!

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

reference capabilities: κ

aliasing capabilities: κ!

unaliasing capabilities: κ^

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

reference capabilities: κ

aliasing capabilities: κ!

viewpoint adaptation: κ->κ’

unaliasing capabilities: κ^

39

Pony types reflect execution

What may I do with my reference?

What if I alias my reference?

What if I un-alias my reference?

What if I read a field from my reference?

What if I extract a field from my reference?

reference capabilities: κ

aliasing capabilities: κ!

viewpoint adaptation: κ->κ’

unaliasing capabilities: κ^

extracting adaptation: κ^->κ’

40

Pony types - 5 novel ingredients

reference capabilities: κ

aliasing a capability: κ!

consuming (unaliasing) capability: κ^

viewpoint adaptation: κ -> κ’

extracting adaptation: κ ^-> κ’

Reference capabilities κ

attached to references (ie paths).

express whether holder of a reference to an object
is allowed to read or write into the object

also express whether other aliases to the object
might read or write into the object

41

42

other actor

actor ThisActor  
 let otherActor: OtherActor  
 
 

otherActor
this actor

42

:Accnt

holder

other actor

actor ThisActor  
 let otherActor: OtherActor  
 
 

otherActor
this actor

 
 let holder: … = new Account  

42

:Accnt

holder

local alias

other actor

actor ThisActor  
 let otherActor: OtherActor  
 
  
 fun … =>  
 var localAlias = holder  

otherActor
this actor

 
 let holder: … = new Account  

42

:Accnt

holder

local alias

other actor

“global alias”

 
 otherAcror.take(holder)

actor ThisActor  
 let otherActor: OtherActor  
 
  
 fun … =>  
 var localAlias = holder  

otherActor
this actor

 
 let holder: … = new Account  

42

:Accnt

holder

local alias

other actor

“global alias”

 
 otherAcror.take(holder)

actor ThisActor  
 let otherActor: OtherActor  
 
  
 fun … =>  
 var localAlias = holder  

otherActor
this actor

 
 let holder: … = new Account  
 Holder’s capability has to be compatible with

possible actions of the local alias,
possible actions of the global alias

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

iso

ref

val

box

tag

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

iso

ref

val

box

tag

holder may 
Read, Write?

RD, WR

RD, WR

RD

RD

—

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

iso

ref

val

box

tag

holder may 
Read, Write?

RD, WR

RD, WR

RD

RD

—

local alias 
might

—

RD, WR

RD

RD, WR

RD, WR

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

iso

ref

val

box

tag

holder may 
Read, Write?

RD, WR

RD, WR

RD

RD

—

local alias 
might

—

RD, WR

RD

RD, WR

RD, WR

global alias 
might

—

—

RD

RD

RD, WR

reference capabilities
(adapted from morning paper)

- and omitting trn -

43

iso

ref

val

box

tag

holder may 
Read, Write?

RD, WR

RD, WR

RD

RD

—

local alias 
might

—

RD, WR

RD

RD, WR

RD, WR

global alias 
might

—

—

RD

RD

RD, WR

holder may
send?

✅

✅

✅

Reference capabilities κ

attached to references (ie paths, eg x, x.f, x.f.g).

express whether holder of a reference to an object
is allowed to read or write into the object

also express whether other aliases to the object are
denied to read or write to the object

44

The type of the receiver is part of function signature

fun ref eat(food: Food box) =>  
 this.strength = this.strength + food.take_a_bite()  

capabilities - find the type errors!

45

Code in 4a_EatingSequential/Eating.pony

capabilities - find the type errors!

45

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

Code in 4a_EatingSequential/Eating.pony

capabilities - find the type errors!

45

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  
 fun box take_a_bite():U64 =>  
 calories = calories/2  
 calories/3  

Code in 4a_EatingSequential/Eating.pony

capabilities - find the type errors!

45

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  
 fun box take_a_bite():U64 =>  
 calories = calories/2  
 calories/3  

actor Main  
 let apple: Food ref

 new create(env':Env) =>  
 apple = Food("apple",50)  
 run()  
 
 be run() =>  
 let pear: Food ref = Food("pear",160)  
 let laurie: Person ref =  
 Person("Laurie",400)  
 let jan: Person ref =  
 Person("Jan",300)  
 jan.eat(apple)  
 laurie.eat(pear)  
 jan.eat(pear)  
 laurie.eat(apple)

Code in 4a_EatingSequential/Eating.pony

capabilities - correct the type errors!

46

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  
 fun box take_a_bite():U64 =>  
 calories = calories/2  
 calories/3  

actor Main  
 let apple: Food ref

 new create(env':Env) =>  
 apple = Food("apple",50)  
 run()  
 
 be run() =>  
 let pear: Food ref = Food("pear",160)  
 let laurie: Person ref =  
 Person("Laurie",400)  
 let jan: Person ref =  
 Person("Jan",300)  
 jan.eat(apple)  
 laurie.eat(pear)  
 jan.eat(pear)  
 laurie.eat(apple)

valid local aliases - find the type errors!

47

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  

 fun ref take_a_bite():U64 =>  
 calories = calories/2  
 calories/3  

actor Main  
 let apple: Food ref

 new create(env':Env) =>  
 apple = Food("apple",50)  
 run()  
 
 be run() =>  
 let pear: Food ref = Food("pear",160)  
 let laurie: Person ref =  
 Person("Laurie",400)  
 let jan: Person ref =  
 Person("Jan",300)  
 jan.eat(apple)  
 laurie.eat(pear)  
 jan.eat(pear)  
 laurie.eat(apple)

valid local aliases - correct the type errors!

48

valid local aliases - correct the type errors!

48

class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food box) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  

 fun ref take_a_bite():U64 =>  
 calories = calories/2  
 calories/3  

actor Main  
 let apple: Food ref

 new create(env':Env) =>  
 apple = Food("apple",50)  
 run()  
 
 be run() =>  
 let pear: Food ref = Food("pear",160)  
 let laurie: Person ref =  
 Person("Laurie",400)  
 let jan: Person ref =  
 Person("Jan",300)  
 jan.eat(apple)  
 laurie.eat(pear)  
 jan.eat(pear)  
 laurie.eat(apple)

49

valid local aliases - type errors corrected
class Person  
 let id: IdentityData val  
 var strength: U64  
  
 fun ref eat(food: Food ref) =>  
 strength = strength +  
 food.take_a_bite()  
 

class Food  
 var calories: U64  
  
 fun ref take_a_bite(): U64 =>  
 calories = calories/2  
 calories/3  

actor Main  
 let apple: Food ref

 new create(env':Env) =>  
 apple = Food("apple",50)  
 run()  
 
 be run() =>  
 let pear: Food ref = Food("pear",160)  
 let laurie: Person ref =  
 Person("Laurie",400)  
 let jan: Person ref =  
 Person("Jan",300)  
 jan.eat(apple)  
 laurie.eat(pear)  
 jan.eat(pear)  
 laurie.eat(apple)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

cycles possible
(cf Rust)

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

cycles possible
(cf Rust)

no incoming references
into mutable regions

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

cycles possible
(cf Rust)

no incoming references
into mutable regions

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

cycles possible
(cf Rust)

no incoming references
into mutable regions

at most one actor
at a time has access
to mutable region

Capabilities and Object Heap (excl. tag)

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

iso: disjoint,
 mutable regions

one
immutable region

cycles possible
(cf Rust)

no incoming references
into mutable regions

at most one actor
at a time has access
to mutable region

Capabilities and Object Heap (excl. tag)

data race free by construction

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

val

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

iso

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

iso:-reference may
be given up, and
sent to other actor

10

13

20

21

12

50

100
box

iso

iso

iso

A1

22
32

A2

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

iso:-reference may
be given up, and
sent to other actoriso

10

13

20

21

12

50

100
box

iso

iso

A1

22
32

A2

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

iso:-reference may
be given up, and
sent to other actoriso

iso

10

13

20

21

12

50

100
box

iso

iso

A1

22
32

A2

ref

ref ref

box ref

ref

104

105

val

101

102
30

box

val

at most one actor
at a time has access
to mutable region

Capabilities and Safe Communication

val-reference may
be sent to other actors

iso:-reference may
be given up, and
sent to other actoriso

iso

share mutable state without copying

Guarantees
of the type system

52

Guarantees

53

Guarantees

• No data-races At most one actor at a time has access to
a mutable region.

53

Guarantees

• No data-races At most one actor at a time has access to
a mutable region.

• Immutability is deep and permanent Everything that is
in the immutable region remains immutable from now on

53

Guarantees - 2
• Capabilities weaker with distance If path p.f has

capability κ, then p has same or “stronger” capability.

• Figment of atomicity If configuration C’’ arises from C
without message receipts at actor α, and if
α sees o at non-tag capability at C’’, and
the contents of o at C different from contents at C’,
then
either α created o, or α caused the change.

•

54

the figment of atomicity

55

interleaved semantics how programmers think

the figment of atomicity

56

interleaved semantics how programmers think

Today’s Talk

• Pony - the language and its design
• Actors

• Causality

• The Type System

• Garbage Collection

57

ORCA:  
Ownership and  

Reference Counting based  
Garbage Collection in the  

Actor World

60

ESOP’18

OOPSLA’17

OOPSLA’13

Pony Garbage Collection
is fully concurrent

ie no synchronization, lo locks, no barrier, no stop the world step.

A B C

GC

behaviour

idle

is fully concurrent
ie no synchronization, lo locks, no barrier, no stop the world step.

GC & Concurrency
Challenges

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

The allocating actor (owner)

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

The allocating actor (owner)

Type System

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

The allocating actor (owner)

Type System

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

The allocating actor (owner)

Type System

use Deferred Reference Counts
and Messaging Mechanism

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

Challenge_4: How deal with uncertainty in message delivery

The allocating actor (owner)

Type System

use Deferred Reference Counts
and Messaging Mechanism

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

Challenge_4: How deal with uncertainty in message delivery

The allocating actor (owner)

Type System

use Deferred Reference Counts
and Messaging Mechanism

rely on Causal Message Delivery

GC & Concurrency
Challenges

Challenge_1: Who collects the objects?

Challenge_2: How avoid data races between GC and mutators?

Challenge_3: How does the “owner” know whether there are foreign
references to its owned objects?

Challenge_4: How deal with uncertainty in message delivery

The allocating actor (owner)

Type System

use Deferred Reference Counts
and Messaging Mechanism

rely on Causal Message Delivery

Tight Connection between Language and Runtime Design and Runtime

64

A1 A2 A3

11 20

21

22

12

2313 22

23

64

A1 A2 A3

11 20

21

22

12

2313 22

23

Challenges

64

A1 A2 A3

11 20

21

22

12

2313 22

23

Challenges

Owning actor might not have path to its live objects
Cycles in object graph

65

A1 A2 A3

11 20

21

22

12

2313 22

23

Approach
Owning actor keeps upper bound on number of actors which have a
path to owned object
Owning actor collects object when this number=0
Foreign actor keeps count of references to un-owned objects
Foreign actor informs owning actor when number of references to
unowned objects changes (ie upon message send/receive or local
tracing)

65

A1 A2 A3

11 20

21

22

12

2313 22

23

Approach
Owning actor keeps upper bound on number of actors which have a
path to owned object
Owning actor collects object when this number=0
Foreign actor keeps count of references to un-owned objects
Foreign actor informs owning actor when number of references to
unowned objects changes (ie upon message send/receive or local
tracing)

Properties: Soundness and Completeness

Pony vs Erlang vs Java

Pony vs Erlang vs Java

Responsiveness

Pony features

68

actors, objects
pass mutable state without copying
static types, type safe
no Null values
capabilities
checked exceptions
pattern marching
lambda-s and partial applications
causality

traits and interfaces
(nominal and structural types)
union and intersection types
generics ala f-bounded
polymorphism
consuming and destructive read
alias/unalias and viewpoints in types
C ffi
small library

69

69

