

Speeding Up Machine Learning Development with MLflow

Hien Luu

Agenda

- Unique Challenges in ML Development Process
- Machine Learning Platform Tour
- Introduction to MLflow
 - Demo

Hidden Technical Debt in Machine Learning Systems (paper from Google)

The required surrounding infrastructure is vast & complex

Software 2.0

New dawn of a new age of software

Machine Learning Development Dimensions

Experimentation

Environments

Big Data

Experimentation Dimension

Machine Learning development is a scientific endeavor

Multiple Environments Dimension

Data Volume Dimension

Machine Learning Pipeline & ML Training Infrastructure

Other Challenges Moving To Model Driven

Scientific exploration and engineering rigorous and automation

Separation of Concerns

https://medium.com/netflix-techblog/open-sourcing-metaflow-a-human-centric-framework-for-data-science-fa72e04a5d9

ML development vs traditional software development

In-house Machine Learning Platforms

UBER

Michelangelo

Google TFX

FBLearner

AI Backbone

ML as-a-service

Deploying production ML pipelines ML as-a-service

Automation, productivity and fast iteration

Anatomy of Machine Learning Platform

Minimize incidental complexity in Machine Learning to increase efficiency

Facebook - FBLearner

Productivity, reusability, scalability, and ease-of-use

Uber - Michelangelo

Democratize & scale Al to make it as easy as requesting a ride

ML as software engineering

Iterative, tested, and methodical

LinkedIn - Pro-ML

To double effectiveness of ML engineers

https://towardsdatascience.com/introducing-pro-ml-68f37574e1f4

Use Cases

- Feeds
- Search
- Recommendation
- Advertisement
- Fraud

Cloud Based Machine Learning Platforms

Machine Learning as a Service - MLaaS

AWS SageMaker

Azure ML

Google Cloud Machine Learning Engine

Major pain points associated with a machine learning project dramatically change as the scale of the project increases.

Pre-trained Machine Learning Models

Vision Speech Language

Text within image, facial expressions

Chat bots, disease predictions, fake news

Translation, language detection

Cloud MLaaS

Al Services (Computer vision, object recognition, NLP)

ML Services (ML IDE, experimentation, model training, management & monitoring)

ML Frameworks & Compute Infrastructure (Tensorflow, Pytorch, Caffe, GPUs, Kubernetes, prediction infrastructure)

MLflow – Open ML Platform

An open source platform for the machine learning lifecycle

Principles

- Open
- Ease of use
- Extensible
- Scalable

Manage the ML lifecycle, including experimentation, reproducibility and deployment

Record and query experiments: code, configs, results, ...etc

Track and analyze experiments

Tracking Experiments

11	Dataset	Split (trian/dev/test)	0.7/0.2/0.1	0.7/0.2/0.1	0.7/0.2/	/	"ML experimentation is like the wild west. Ad-hoc tools and processes because of a lack of standardized tooling. Forget reproducibility, it is			
12		Class ratio (train/dev/test)	0.42/0.42/0.42	0.42/0.42/0.42	0.42/0.4	"M				
13		train/dev/test size	4871/1392/696	4871/1392/696	5315/15	W				
14	Training hyperparameters	Learning rate	1.00E-05	1.00E-05	; .	h				
15		epoch	3	2	2					
16		batch size	32	32	2	το				
17		accuracy	0.88304595	0.8650862069	0.	d	difficult to track experiments and			
18		f1	0.82495437	0.8108753316	0.8		results."			
19		precision	0.878865	0.7848381601	0.8					
20		recall	0.7780239	0.8389705882	.0.8	3070	00			
21	Results	tp	1398	1402	2	140	1334	1130		
22		tn	1692	1663		1707	1543	1504		
23		fp	1113	1142	2	1161	1108	1148		
24		fn	1189	1185	;	1190	1154	1357		
25		loss	0.59637538	0.594134	0	.594134	0.6037084	0.594134		
26	Test results	accuracy	0.90747	0.90747	,	0.88026	0.88314	0.75847		
27		f1	0.85636	0.85636	;	0.83108	0.83469	0.5915		
28		precision	0.90934	0.90934		0.86689	0.87027	0.77626		
29		recall	0.8099	0.8099		0.79846	0.80226	0.48604		
30			https://towar	dsdatascience.	com/tra	cking-r	nl-experiment	s-using-mlflow	-7910197091bb	

Python, R, Java, REST

Tracking

Record and query experiments: code, data, config, results

import mlflow

log model's tuning parameters

```
with mlflow.start_run():
    mlflow.log_param("layers", layers)
    mlflow.log_param("alpha", alpha)
```

log model's metrics
mlflow.log_metric("mse", model.mse())
mlflow.log_artifact("plot", model.plot(test_df))

Recently added: mlflow.keras.autolog()

MLflow – Open ML Platform

- UI Demo
 - Show MLFlow parameter and metric logging
 - Visualize the experiments
 - mlflow ui
 - <u>http://127.0.0.1:7000/#/</u>

MLflow – Projects

Projects

Packaging format for reproducible runs on any platform

Reproducibility via self-contained ML project specification

MLflow – Open ML Platform

Reproducibility, Sharing, Productionalization

MLflow – Projects

\$ mlflow run <directory> or git://<my_project>
mlflow.run("<directory> or git://<my_project>")

MLflow – Projects

- Demo
 - mlflow run <local directory>
 - mlflow run <github>

MLflow – Models

Models

General model format that supports diverse deployment tools

Simplify model deployment

MLflow – Models

General format for sending models to diverse deploy tools

Models

MLflow – Models

mlflow.tensorflow.log_model(...)

run_id: <uuid> time_created: 2019-06-20T08:11 tensorflow: saved_model_dir: estimator signature_def_key: predict python_function: loader_module: mlflow.tensorflow

MLflow – Models

Model Flavors

General format for sending models to diverse deploy tools

Models

Built-In Flavors

- Python Function
- R,H₂O
- Keras
- Mleap
- PyTorch
- Skiki-learn
- Spark Mllib
- TensorFlow
- ONNX

MLflow – Model Registry

Model lifecycle management

Collaboratively manage the full lifecycle of a model

MLflow – Model Registry

Managing Models Collaboratively

- Model administration and review
 - Sharing, versioning, approval workflow
- Integrate with MLflow tracking
- Centralized activity logs and comments
- Integration with CI/CD

MLflow

- Demo
 - Deploy model to a REST endpoint
 - mlflow models serve
 - Simple application to call REST endpoint to perform prediction
 - Flask application

Summary

- Interesting & unique challenges with ML development process
- In-house & cloud-based ML infrastructures
- MLflow open source ML platform
 - Tracking
 - Project
 - Model
 - Model registry

AWS AI Platform

Google AI Platform

Azure Al Platform

MLflow – Models

Models

General format for sending models to diverse deploy tools

- Packaging format for ML Model
 - Directory structure
 - Different flavors
 - (keras, pytorch, sklearn, spark, tensorflow)
- Define dependencies
 - Easy reproducibility & deployment
- Model creation utilities
 - To save model in MLFlow format
- Deployment APIs
 - CLI Python, R, Java

MLflow – Projects

Projects

Packaging format for reproducible runs on any platform

- Packaging format for reproducible for ML runs
 - Training code folder or Github repository
 - Project configuration file in YMAL format
- Define dependencies for <u>reproducibility</u>
 - Using Conda to specifying and managing dependencies
- Execution API for running projects
 - Local or remote execution
 - CLI Python, R, Java
 - mlflow run