Machine Learning and Fraud Detection

Tamsin Crossland – Senior Architect

World Class Payment and Enterprise Solutions for the global financial sector

@CrosslandTamsin

Two main types of article on Al architectures essentially facilitate diffusion of infor-aphs. The more GCN layers an architecture contains.

aphs. The more GCN layers an architecture contains, ily the information is smoothed. It is therefore impor-

tant to recognize that the performance of a traditional GCN relies heavily on a high degree of intraclass clustering [7]. This is a result of the convolutional kernel being determined by the adjacency matrix A, which is inherently fixed. Also note that all vertices are either binary encoded or represented by a single weight. This is a limiting aspect when it comes to graphs containing more detailed

etween vertices.

ameworks

dard GCN (as displayed in Equapecial case of a message-passing difference in notation is that an t the node level. This is more in on of the architectures proposed d will therefore be used for the

inary adjacency matrix, Equation

+
$$\sum_{j \in N_i} h_j^{(l)} W^{(l)}$$
,

(2)

(3)

of node v_i in layer l, N_i denotes ode v_i , and c_i is a node-specific vpically takes a value of $|N_i| + 1$ 1 self-connections), in case of an

ights wii, Equation 2 can be ex-

$$\sum_{i \in \mathcal{N}_i} w_{ij} \boldsymbol{h}_j^{(l)} \mathbf{W}^{(l)},$$

v vertices to retain their original properties

context of message passing frameworks, this leads to the following propagation rule:

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left(\boldsymbol{h}_{i}^{(l)} \boldsymbol{W}_{s}^{(l)} + \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_{i}^{r}} \frac{1}{c_{i,r}} \boldsymbol{h}_{j}^{(l)} \boldsymbol{W}_{r}^{(l)} \right),$$
(5)

where $W_r \in \mathbb{R}^{|\mathcal{F}^{(l)}| \times |\mathcal{F}^{(l+1)}|}$ now are *relation-specific* weight matrices, W_s denotes the weight matrix associated with self-connections (both trainable), and ci, r are relation-specific normalization constants, typically of value $|N_i^r|$. In order to facilitate the directional nature of some interactions, the set of relations R was expanded to contain a version in both edge directions (incoming and outgoing), by means of both canonical and inverse variations of each relation.

3 LATENT GRAPHS

3.1 Pseudo-relations

We can extend the multi-relational approach of R-GCNs to the case of edges being represented by a vector wij containing multiple weights across different edge attributes. These attributes can effectively be regarded as non-binary pseudo-relations R. The propagation rule now takes a form akin to Equation 3:

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left(\frac{1}{c_{i}} \sum_{r \in \mathcal{R}} \left[\boldsymbol{w}_{s}^{r} \boldsymbol{h}_{i}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \boldsymbol{w}_{ij}^{r} \boldsymbol{h}_{j}^{(l)} \right] \boldsymbol{W}_{r}^{(l)} \right), \tag{6}$$

with c_i now taking the form of:

$$c_i = \sum_{r \in \mathcal{R}} \left(w_s^r + \sum_{j \in \mathcal{N}_i} w_{ij}^r \right).$$
(7)

Note that $W_s^{(l)}$ from Equation 5 has been absorbed into $W_r^{(l)}$. The weight of self-connections can now be learned by means of a selfweight vector w_s . In essence, this method obtains an updated node representation for every pseudo-relation separately, after which a weighted summation takes place in order to arrive at the final embedding. The original publication by Schlichtkrull et al. [10] alludes to the possibility of replacing the weighted sum with a more elaborate learning mechanism, such as a fully connected layer, but this was left for future work.

Machine Learning and Fraud Detection

- Payments
- Demonstration

Thoughts

Machine Learning and Fraud Detection

- Payments
- Demonstration

Thoughts

The increasing scale, diversity, and complexity of fraud.

• Vulnerabilities in payments services have increased as the shift to digital and mobile customer platforms accelerates.

The increasing scale, diversity, and complexity of fraud.

 New solutions have also led to payments transactions being executed more quickly, leaving banks and processors with less time to identify, counteract, and recover the underlying funds when necessary.

The increasing scale, diversity, and complexity of fraud.

 The sophistication of fraud has increased:
 greater collaboration among bad actors, including: the exchange of stolen data, new techniques, and expertise on the dark web.

The fraud threat facing banks and payments firms has grown dramatically in recent years.

Estimates of fraud's impact on consumers and financial institutions vary significantly but losses to banks alone are conservatively estimated to exceed \$31 billion globally by 2018. Average number of fraudulent transactions attempted per merchant per month¹

¹Weighted merchant responses to LexisNexis survey questions: In a typical month, approximately how many fraudulent transactions are prevented by your company/successfully completed by fraudsters? What is the average value of successful fraud transactions? ²Per annum.

McKinsey&Company | Source: 2016 LexisNexis True Cost of Fraud Study; US Department of Commerce

Instant Payments

Rule Based Systems

Example: if a credit card transaction is more than ten times larger than the average for this customer Allow the human experts to apply their subject matter expertise. Difficult and time-consuming to implement well.

Includes the painstaking definition of every single rule for anomaly possible

If experts make an omission, undetected anomalies will happen and nobody will suspect it.

Today, legacy systems apply about 300 different rules on average to approve a transaction

Neural Network

Weights and Biases

Training

Use Case

Rule Based versus Machine Learning

Rule Based	Machine Learning
Catches obvious fraudulent scenarios	Finds hidden correlations in data
Large amount of manual work to enumerate all possible detection rules	Automatic detection of possible fraud scenarios
Easier to explain	More difficult to explain

Machine Learning and Fraud Detection

Payments

Demonstration

Thoughts

Install Tensorflow

tamsincrossland@A318 MINGW64 ~/Documents/AI/creditcardfraud \$ winpty docker run -it --rm -v /\${PWD}:/tf/tensorflow-tutorials/wkDir _p 8888:8888 tensorflow/tensorflow:latest-py3-jupyter

Install Libraries

Data Analysis

learn

data mining and data analysis

winpty docker exec -i -t 07a24f61e7b6 bash pip install pandas pip install -U scikit-learn

Contains two days worth of credit card transactions made in September 2013 by European cardholders.

492 frauds out of 284,807 transactions (0.172%).

Contains only numerical input variables which are the result of a Principal Component Analysis transformation (a method of extracting relevant information from confusing data sets).

Due to confidentiality issues, cannot provide the original features and more background information about the data.

Demonstration 1

People with no idea about AI saying it will take over the world:

My Neural Network:

Balance data

```
df = df.sample(frac=1)
```

```
# amount of fraud classes 492 rows.
fraud_df = df.loc[df['Class'] == 1]
non_fraud_df = df.loc[df['Class'] == 0][:492]
```

```
normal_distributed_df = pd.concat([fraud_df, non_fraud_df])
```

```
# Shuffle dataframe rows
new_df = normal_distributed_df.sample(frac=1, random_state=42)
```


49%

Epoch 1/5

787/787 [===========] - 0s 155us/sample - loss: 3847.0455 - accuracy: 0.4968
Epoch 2/5
787/787 [=========] - 0s 45us/sample - loss: 2625.2003 - accuracy: 0.4943
Epoch 3/5
787/787 [=========] - 0s 46us/sample - loss: 2379.6559 - accuracy: 0.4956
Epoch 4/5
787/787 [=========] - 0s 44us/sample - loss: 2528.0340 - accuracy: 0.4460
Epoch 5/5
787/787 [==========] - 0s 47us/sample - loss: 2153.2511 - accuracy: 0.4930

Data Loss

284315 -> 492

Attempt 3 Janio Martinez Bachmann

Search

kaggle

O Credit Fraud || Dealing with Imbalanced Datasets

Python notebook using data from Credit Card Fraud Detection · 78,436 view

Q

data visualization, classification, finance, +2 more

Libraries

seaborn: statistical data visualization

a library for making statistical graphics in Python.

imblearn

Toolbox for imbalanced dataset in machine learning.

Underfitting and Overfitting

Overfitting

solutions

Outliers

object	temperature
object 1	71 °F
object 2	70 °F
object 3	73 °F
object 4	70 °F
object 5	70 °F
object 6	69 °F
object 7	70 °F
object 8	72 °F
object 9	71 °F
object 10	300 °F -(
object 11	71 °F
object 12	69 °F

Principal Component Analysis

solutions

Demonstration 2

```
df = pd.read_csv('creditcard.csv')
```

df.head()

Out[1]:

	Time		1/2	1/2			NC	1/7	1/0	10	1/24	1/22	1/22	1/24	
	Time	V1	VZ	VD	٧4	٢٥	Vo	VI	V8	V9	 V21	V22	VZS	VZ4	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.066928	0.128
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.339846	0.167
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.689281	-0.327
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.175575	0.647
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.141267	-0.206

Scale time and amount

Scaling

Time and Amount should be scaled as the other columns.

In [2]: # Since most of our data has already been scaled we should scale Amount and Time to be between -1 and 1 too
from sklearn.preprocessing import RobustScaler

```
rob_scaler = RobustScaler()
```

```
df['scaled_amount'] = rob_scaler.fit_transform(df['Amount'].values.reshape(-1,1))
df['scaled_time'] = rob_scaler.fit_transform(df['Time'].values.reshape(-1,1))
```

```
df.drop(['Time', 'Amount'], axis=1, inplace=True)
scaled_amount = df['scaled_amount']
scaled_time = df['scaled_time']
```

```
df.drop(['scaled_amount', 'scaled_time'], axis=1, inplace=True)
df.insert(0, 'scaled_amount', scaled_amount)
df.insert(1, 'scaled_time', scaled_time)
```

Amount and Time are Scaled!

df.head()

Out[2]:

	scaled_amount	scaled_time	V1	V2	V 3	V4	V 5	V 6	V 7	V8	 V20	V21	V22	
0	1.783274	-0.994983	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	 0.251412	-0.018307	0.277838	-0.11
1	-0.269825	-0.994983	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	 -0.069083	-0.225775	-0.638672	0.10

Random under-sampling

In this phase of the project we will implement "Random Under Sampling" which basically consists of removing data in order to have a more **balanced dataset** and thus avoiding our models overfitting.


```
df = df.sample(frac=1)
```

```
# amount of fraud classes 492 rows.
fraud_df = df.loc[df['Class'] == 1]
non_fraud_df = df.loc[df['Class'] == 0][:492]
```

normal_distributed_df = pd.concat([fraud_df, non_fraud_df])

```
# Shuffle dataframe rows
```

new_df = normal_distributed_df.sample(frac=1, random_state=42)

```
colors = ["#0101DF", "#DF0101"]
```

```
sns.countplot('Class', data=new_df, palette=colors)
plt.title('Class Distributions \n (0: No Fraud || 1: Fraud)', fontsize=14)
```


Correlation Matrix

Used to show which features heavily influence whether a transaction is a fraud

Now that we have our dataframe correctly balanced, we can go further with our analysis and data preprocessing.

Correlation Matrices

A correlation matrix is used to show which features heavily influence whether a specific transaction is a fraud.

Make sure we use the subsample in our correlation

```
f, (ax1) = plt.subplots(figsize=(12,10))
```

```
sub_sample_corr = new_df.corr()
sns.heatmap(sub_sample_corr, cmap='coolwarm_r', annot_kws={'size':20}, ax=ax1)
ax1.set_title('SubSample Correlation Matrix \n', fontsize=14)
plt.show()
```


Summary and Explanation:

- Positive Correlations: V2, V4, V11, and V19 are positively correlated. The higher these values are, the more likely the end result will be a fraud transaction.
- Negative Correlations: V17, V14, V12 and V10 are negatively correlated. The lower these values are, the more likely the end result will be a fraud transaction.

Anomaly detection

Our main aim in this section is to remove "extreme outliers" from features that have a high correlation with our classes. This will have a positive impact on the accuracy of our models.

f, axes = plt.subplots(ncols=4, figsize=(20,4))

Positive correlations (The higher the feature the probability increases that it will be a fraud transaction)
sns.boxplot(x="Class", y="V11", data=new_df, palette=colors, ax=axes[0])
axes[0].set_title('V11 vs Class Positive Correlation')

sns.boxplot(x="Class", y="V4", data=new_df, palette=colors, ax=axes[1])
axes[1].set_title('V4 vs Class Positive Correlation')

sns.boxplot(x="Class", y="V2", data=new_df, palette=colors, ax=axes[2])
axes[2].set_title('V2 vs Class Positive Correlation')

sns.boxplot(x="Class", y="V19", data=new_df, palette=colors, ax=axes[3])
axes[3].set_title('V19 vs Class Positive Correlation')

plt.show()


```
# Removing outliers V10 Feature
v10_fraud = new_df['V10'].loc[new_df['Class'] == 1].values
q25, q75 = np.percentile(v10_fraud, 25), np.percentile(v10_fraud, 75)
v10_iqr = q75 - q25
```

```
v10_cut_off = v10_iqr * 1.5
v10_lower, v10_upper = q25 - v10_cut_off, q75 + v10_cut_off
print('V10 Lower: {}'.format(v10_lower))
print('V10 Upper: {}'.format(v10_upper))
outliers = [x for x in v10_fraud if x < v10_lower or x > v10_upper]
print('V10 outliers: {}'.format(outliers))
print('Feature V10 Outliers for Fraud Cases: {}'.format(len(outliers)))
new_df = new_df.drop(new_df[(new_df['V10'] > v10_upper) | (new_df['V10'] < v10_lower)].index)
print('Number of Instances after outliers removal: {}'.format(len(new_df)))
```

After implementing outlier reduction our accuracy has been improved by **over 3%**! Some outliers can distort the accuracy of our models but remember, we have to avoid an extreme amount of information loss or else our model runs the risk of underfitting.

> V10 Lower: -14.89885463232024 V10 Upper: 4.920334958342141 V10 outliers: [-20.949191554361104, -15.346098846877501, -17.141513641289198, -14.9246547735487, -16.7460441053944, -15.2318333 653018, -18.9132433348732, -15.124162814494698, -15.2399619587112, -16.6496281595399, -15.563791338730098, -15.563791338730098, -23.2282548357516, -19.836148851696, -15.2399619587112, -15.1237521803455, -22.1870885620007, -16.6011969664137, -18.2711681738 888, -16.2556117491401, -22.1870885620007, -24.5882624372475, -16.3035376590131, -24.403184969972802, -22.1870885620007, -14.92 46547735487, -22.1870885620007] Feature V10 Outliers for Fraud Cases: 27 Number of Instances after outliers removal: 945

Dimensionality Reduction and Clustering

of the information.

New_df is from the random undersample data (fewer instances)
X = new_df.drop('Class', axis=1)
y = new_df['Class']

T-SNE Implementation
t0 = time.time()

X_reduced_tsne = TSNE(n_components=2, random_state=42).fit_transform(X.values)
t1 = time.time()

PCA Implementation

t0 = time.time()
X_reduced_pca = PCA(n_components=2, random_state=42).fit_transform(X.values)
t1 = time.time()

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24,6))
labels = ['No Fraud', 'Fraud']
f.suptitle('Clusters using Dimensionality Reduction', fontsize=14)

blue_patch = mpatches.Patch(color='#0A0AFF', label='No Fraud')
red_patch = mpatches.Patch(color='#AF0000', label='Fraud')

t-SNE scatter plot

ax1.scatter(X_reduced_tsne[:,0], X_reduced_tsne[:,1], c=(y == 0), cmap='coolwarm', label='No Fraud', linewidths=2)
ax1.scatter(X_reduced_tsne[:,0], X_reduced_tsne[:,1], c=(y == 1), cmap='coolwarm', label='Fraud', linewidths=2)
ax1.set_title('t-SNE', fontsize=14)

ax1.grid(True)

ax1.legend(handles=[blue_patch, red_patch])

PCA scatter plot

ax2.scatter(X_reduced_pca[:,0], X_reduced_pca[:,1], c=(y == 0), cmap='coolwarm', label='No Fraud', linewidths=2)
ax2.scatter(X_reduced_pca[:,0], X_reduced_pca[:,1], c=(y == 1), cmap='coolwarm', label='Fraud', linewidths=2)
ax2.set_title('PCA', fontsize=14)

ax2.grid(True)

ax2.legend(handles=[blue_patch, red_patch])

plt.show()

Dimensionality Reduction and Clustering

Clusters using Dimensionality Reduction

Summary:

- t-SNE algorithm can pretty accurately cluster the cases that were fraud and non-fraud in our dataset.
- Although the subsample is pretty small, the t-SNE algorithm is able to detect clusters pretty accurately in every scenario (I shuffle the dataset before running t-SNE)
- · This gives us an indication that further predictive models will perform pretty well in separating fraud cases from non-fraud cases.

t-SNE takes a high-dimensional dataset and reduces it to a low-dimensional graph whilst still retaining a lot of the information.

Addressing class imbalance problems of ML via SMOTE: synthesising new dots between existing dots

Synthetic Minority Over-sampling Technique

Solving the Class Imbalance: SMOTE creates synthetic points from the minority class in order to reach an equal balance between the minority and majority class.

Location of the synthetic points: SMOTE picks the distance between the closest neighbors of the minority class, in between these distances it creates synthetic points.

Final Effect: More information is retained since we didn't have to delete any rows unlike in random undersampling.

Compile the model

The following example uses *accuracy*, the fraction of the transactions that are correctly classified.

optimizers shape and mold your model into its most accurate possible form by futzing with the weights. The loss function is the guide to the terrain, telling the optimizer when it's moving in the right or wrong direction.

n Layer

Output Layer

	-			-				
Epoch 1/20	10551	0 7091	accuracy	0 6759	val loss:	0 4522	val accuracy.	0 7047
Epoch 2/20	1055.	0.7001 -	accuracy.	0.0556 -	Va1_1055.	0.4522	- vai_accuracy.	0.7947
604/604 - 0s -	loss:	0.3993 -	accuracy:	0.8046 -	val_loss:	0.3239	 val_accuracy: 	0.8675
604/604 - 0s -	loss:	0.3101 -	accuracy:	0.8825 -	val loss:	0.2623	- val accuracy:	0.9073
Epoch 4/20			· · · ·		_		_ ,	
604/604 - 0s -	loss:	0.2573 -	accuracy:	0.9255 -	val_loss:	0.2272	 val_accuracy: 	0.9139
604/604 - 0s -	loss:	0.2201 -	accuracy:	0.9387 -	val loss:	0.2035	- val_accuracy:	0.9139
Epoch 6/20			-		_			
604/604 - 0s -	loss:	0.1927 -	accuracy:	0.9437 -	val_loss:	0.1856	- val_accuracy:	0.9139
604/604 - 0s -	loss:	0.1707 -	accuracy:	0.9487 -	val_loss:	0.1728	 val_accuracy: 	0.9205
Epoch 8/20	1	0.4540		0.0500		0.4630		0.0005
604/604 - 05 - Epoch 9/20	1055:	0.1549 -	accuracy:	0.9503 -	Val_loss:	0.1638	- val_accuracy:	0.9205
604/604 - 0s -	loss:	0.1437 -	accuracy:	0.9503 -	val_loss:	0.1615	 val_accuracy: 	0.9205
Epoch 10/20	10551	0 1344 -	accupacy:	0 0502 -	val loss:	0 1553	- val accupacy:	0 0130
Epoch 11/20	1055.	0.1344 -	accuracy.	0.9505 -	va1_1055.	0.1555	- vai_accuracy.	0.9159
604/604 - 0s -	loss:	0.1258 -	accuracy:	0.9553 -	val_loss:	0.1522	 val_accuracy: 	0.9139
Epoch 12/20 604/604 - 0s -	loss:	0.1209 -	accuracv:	0.9487 -	val loss:	0.1488	- val accuracv:	0.9139
Epoch 13/20			,-					
604/604 - 0s -	loss:	0.1135 -	accuracy:	0.9570 -	val_loss:	0.1470	 val_accuracy: 	0.9139
604/604 - 0s -	loss:	0.1078 -	accuracy:	0.9586 -	val_loss:	0.1470	- val_accuracy:	0.9139
Epoch 15/20								
604/604 - 0s - Epoch 16/20	1055:	0.1023 -	accuracy:	0.9636 -	val_loss:	0.1463	- val_accuracy:	0.9139
604/604 - 0s -	loss:	0.0981 -	accuracy:	0.9636 -	val_loss:	0.1463	 val_accuracy: 	0.9205
Epoch 17/20	10551	0 0034 -	accupacy	0 0695	val loss:	A 1490	- val accupacy:	0 0205
Epoch 18/20	1055.	0.0954 -	accuracy.	0.9085 -	vai_1055.	0.1409	- vai_accuracy.	0.9205
604/604 - 0s -	loss:	0.0901 -	accuracy:	0.9719 -	val_loss:	0.1474	 val_accuracy: 	0.9205
Epocn 19/20 604/604 - 0s -	loss:	0.0854 -	accuracv:	0.9685 -	val loss:	0.1511	- val accuracv:	0.9205
Epoch 20/20								
604/604 - 0s -	loss:	0.0821 -	accuracy:	0.9752 -	val_loss:	0.1476	 val_accuracy: 	0.9272

Confusion Matrix

	Predicted: no	Predicted: Yes
Actual: no	True negative	False positive
Actual: yes	False negative	True positive


```
undersample_cm = confusion_matrix(original_ytest, undersample_fraud_predictions)
actual_cm = confusion_matrix(original_ytest, original_ytest)
labels = ['No Fraud', 'Fraud']
```

```
fig = plt.figure(figsize=(16,8))
```

fig.add_subplot(221)
plot_confusion_matrix(undersample_cm, labels, title="Random UnderSample \n Confusion Matrix", cmap=plt.cm.Reds)

fig.add_subplot(222)
plot_confusion_matrix(actual_cm, labels, title="Confusion Matrix \n (with 100% accuracy)", cmap=plt.cm.Greens)

Using SMOTE

Keras || OverSampling (SMOTE):

```
n_inputs = Xsm_train.shape[1]
```

```
oversample_model = Sequential([
    Dense(n_inputs, input_shape=(n_inputs, ), activation='relu'),
    Dense(32, activation='relu'),
    Dense(2, activation='softmax')
])
```

```
oversample_model.compile(Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
oversample_model.fit(Xsm_train, ysm_train, validation_split=0.2, batch_size=300, epochs=20, shuffle=True, verbose=2)
oversample_predictions = oversample_model.predict(original_Xtest, batch_size=200, verbose=0)
oversample_fraud_predictions = oversample_model.predict_classes(original_Xtest, batch_size=200, verbose=0)
```


Train on 363923 samples, validate on 90981 samples Epoch 1/20 363923/363923 - 2s - loss: 0.0898 - accuracy: 0.9685 - val loss: 0.0341 - val accuracy: 0.9880 Epoch 2/20 363923/363923 - 2s - loss: 0.0187 - accuracy: 0.9953 - val loss: 0.0118 - val accuracy: 0.9997 Epoch 3/20 363923/363923 - 2s - loss: 0.0099 - accuracy: 0.9978 - val loss: 0.0078 - val accuracy: 0.9996 Epoch 4/20 363923/363923 - 2s - loss: 0.0065 - accuracy: 0.9985 - val loss: 0.0038 - val accuracy: 0.9999 Epoch 5/20 363923/363923 - 2s - loss: 0.0050 - accuracy: 0.9990 - val loss: 0.0055 - val accuracy: 1.0000 Epoch 6/20 363923/363923 - 2s - loss: 0.0039 - accuracy: 0.9992 - val loss: 0.0019 - val accuracy: 1.0000 Epoch 7/20 363923/363923 - 2s - loss: 0.0035 - accuracy: 0.9993 - val loss: 0.0031 - val accuracy: 0.9997 Epoch 8/20 363923/363923 - 2s - loss: 0.0028 - accuracy: 0.9994 - val loss: 0.0015 - val accuracy: 1.0000 Epoch 9/20 363923/363923 - 2s - loss: 0.0028 - accuracy: 0.9994 - val loss: 0.0018 - val accuracy: 1.0000 Epoch 10/20 363923/363923 - 2s - loss: 0.0022 - accuracy: 0.9995 - val loss: 0.0015 - val accuracy: 1.0000 Epoch 11/20 363923/363923 - 2s - loss: 0.0020 - accuracy: 0.9996 - val loss: 0.0011 - val accuracy: 1.0000 Epoch 12/20 363923/363923 - 2s - loss: 0.0021 - accuracy: 0.9996 - val loss: 0.0033 - val accuracy: 0.9993 Epoch 13/20 363923/363923 - 2s - loss: 0.0017 - accuracy: 0.9997 - val loss: 7.2115e-04 - val accuracy: 1.0000 Epoch 14/20 363923/363923 - 2s - loss: 0.0015 - accuracy: 0.9997 - val loss: 6.4973e-04 - val accuracy: 1.0000 Epoch 15/20 363923/363923 - 2s - loss: 0.0014 - accuracy: 0.9997 - val loss: 4.9727e-04 - val accuracy: 1.0000 Epoch 16/20 363923/363923 - 2s - loss: 0.0014 - accuracy: 0.9997 - val_loss: 3.8057e-04 - val_accuracy: 1.0000 Epoch 17/20 363923/363923 - 2s - loss: 0.0013 - accuracy: 0.9997 - val loss: 0.0018 - val accuracy: 0.9998 Epoch 18/20 363923/363923 - 3s - loss: 0.0013 - accuracy: 0.9997 - val loss: 0.0011 - val accuracy: 1.0000 Epoch 19/20 363923/363923 - 2s - loss: 9.5826e-04 - accuracy: 0.9998 - val_loss: 1.4088e-04 - val_accuracy: 1.0000 Epoch 20/20 363923/363923 - 2s - loss: 8.8616e-04 - accuracy: 0.9998 - val loss: 4.3943e-04 - val accuracy: 1.0000

53

Unsupervised Learning

Iris setos

Iris versicolo

Iris Data Set

- 50 samples from each of three species of Iris.
- Four features were measured from each sample:
- the length and the width of the sepals and petals, in centimeters.

- the objective of K-means is simple:
- group similar data points together and discover underlying patterns.
- To achieve this objective, K-means looks for a fixed number (k) of clusters in a dataset.

KMeans

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups).

The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable *K*. The algorithm works iteratively to assign each data point to one of *K* groups based on the features that are provided. Data points are clustered based on feature similarity.

Demonstration 3

Machine Learning and Fraud Detection

Payments

Demonstration

Thoughts

Two Questions Every Machine Learning Project Should Ask

Is the purpose of the project ethical?

Is the implementation of the project ethical?

@CrosslandTamsin

Two Questions Every Machine Learning Project Should Ask

Is the purpose of the project ethical?

what are the additional benefits of the project? who does it benefit?

NEW

As more over-55s are targeted, regulators say average amount swindled in 2017 was £91,000

Action Fraud in More than five million fall victim to financial lost £18,000 but scams, Lloyds Bank warns

Fraud complaints hit record high as banks' new steals \$3K anti-scam measures delayer Give Mork Eimes

Family & Edu

Scam victims left unprotected :

More people tricked into transferring money to

Bis the purpose of the project ethical? herability,

and Find It in Older People

Business Your Money Market Data Companies Economy

Politics

Business

Swindlers prey on people over 70, who lose millions each year to their shifting tactics.

Bank payment scams claim 84,000 victims

Science

ITV REPORT 12 September 2019 at 10:29am nmers lived 'like Premier League

Scammers targeting flooding vic Woman loses £300,000

Two Questions Every Machine Learning Project Should Ask

Is the implementation of the project ethical? Does it implement unfair bias?

Disclose to stakeholders about their interactions with an Al

Governance:

- secure,
- reliable and robust, and
- appropriate processes are in place to ensure responsibility and accountability for those AI systems

Is the implementation of the project ethical?

- Positive Correlations: V2, V4, V11, and V19 are positively correlated. Notice how the higher these values are, the more likely the end result will be a
 fraud transaction.
- solutions
- Negative Correlations: V17, V14, V12 and V10 are negatively correlated. Notice how the lower these values are, the more likely the end result will be a
 fraud transaction.

One last thing

Is it Intelligent?

THE MANTIMES

As more over-55s are targeted, regulators say average amount swindled in 2017 was £91,000

